The realization space is [1 x2*x3 1 1 0 x2*x3 - x3 0 x2 x2*x3 0 1] [1 3*x1*x2^2 - 2*x1*x2 - x2*x3 + 2*x3 0 0 1 3*x1*x2^2 - 2*x1*x2 - 2*x2*x3 + 2*x3 0 x2 3*x1*x2^2 - 2*x1*x2 - x2*x3 + 2*x3 1 x2] [1 3*x1*x2^2 - 2*x1*x2 - x2*x3 + 2*x3 0 1 0 0 1 x3 x3^2 x1 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal (3*x1^2*x2^3 - 2*x1^2*x2^2 - 3*x1*x2^2*x3 + 3*x1*x2*x3 + x2*x3^2 - x3^2) avoiding the zero loci of the polynomials RingElem[x1*x2 - x1 - x3 + 1, 3*x1^2*x2^2 - 2*x1^2*x2 - x1*x2^2*x3 - 3*x1*x2^2 - x1*x2*x3 + 2*x1*x2 + 2*x1*x3 + x2*x3^2 + x2*x3 - 2*x3, x1*x2 - x3, x1*x2 - x3 + 1, x1, 3*x1^2*x2^2 - 2*x1^2*x2 - x1*x2^2*x3 - x1*x2*x3 + 2*x1*x3 + x2*x3^2 - x3^2, x2 - 1, 3*x1*x2^2*x3 - 3*x1*x2^2 - 2*x1*x2*x3 + 2*x1*x2 + x2^2*x3 - 3*x2*x3^2 + x2*x3 + 3*x3^2 - 2*x3, 3*x1*x2^2 - 2*x1*x2 - x2*x3 - x3^2 + 2*x3, 3*x1*x2^2 - 2*x1*x2 - x2^2*x3 - x2*x3 + 2*x3, 3*x1*x2^2 - 2*x1*x2 - 2*x2*x3 + 2*x3, 3*x1*x2^2*x3 - 3*x1*x2^2 - 2*x1*x2*x3 + 2*x1*x2 + x2^2*x3 - 2*x2*x3^2 + x2*x3 + 2*x3^2 - 2*x3, x3, x2 - x3, 3*x1*x2^2 - 2*x1*x2 - x2*x3 + 2*x3, x2, x3 - 1, 3*x1*x2^2 - 2*x1*x2 - x2*x3^2 - x2*x3 + 2*x3, 3*x1*x2^3 - 3*x1*x2^2*x3 + x1*x2^2 + 2*x1*x2*x3 - 2*x1*x2 - 2*x2^2*x3 + x2*x3^2 + x2*x3 - 2*x3^2 + 2*x3, 3*x1^2*x2^2 - 2*x1^2*x2 - 2*x1*x2*x3 + 2*x1*x3 + x2*x3 - x3^2, 3*x1^2*x2^2 - 2*x1^2*x2 - x1*x2*x3 + 2*x1*x3 - x3^2, 3*x1^2*x2^2 - 2*x1^2*x2 - x1*x2*x3 + 2*x1*x3 + x2*x3 - x3^2, 3*x1^2*x2^2 - 2*x1^2*x2 - 3*x1*x2^2 - 2*x1*x2*x3 + 2*x1*x2 + 2*x1*x3 + x2*x3 + x3^2 - 2*x3, x1*x2 + x2 - x3, 3*x1^2*x2^2 - 2*x1^2*x2 - 3*x1*x2*x3 + 3*x1*x3 + x2*x3 - x3, 3*x1^2*x2^2 - 2*x1^2*x2 + 3*x1*x2^3 - x1*x2^2*x3 - 5*x1*x2^2 - x1*x2*x3 + 2*x1*x2 + 2*x1*x3 - x2^2*x3 + 3*x2*x3 - 2*x3, 3*x1^2*x2^2 - 2*x1^2*x2 - 2*x1*x2*x3 + 2*x1*x3 + x2*x3 - x3, 3*x1^2*x2^2 - 2*x1^2*x2 - 3*x1*x2^2 - x1*x2*x3 + 2*x1*x2 + 2*x1*x3 + 2*x2*x3 - 2*x3, x1 - 1, 3*x1*x2^2 - 2*x1*x2 - 3*x2*x3 + 3*x3, 9*x1^2*x2^5 - 12*x1^2*x2^4 + 4*x1^2*x2^3 - 12*x1*x2^4*x3 + 23*x1*x2^3*x3 - 3*x1*x2^2*x3^2 - 10*x1*x2^2*x3 + 2*x1*x2*x3^2 + 3*x2^3*x3^2 + x2^2*x3^3 - 9*x2^2*x3^2 + x2*x3^3 + 6*x2*x3^2 - 2*x3^3, 3*x1*x2^3 - 3*x1*x2^2*x3 - 2*x1*x2^2 + 2*x1*x2*x3 - 3*x2^2*x3 + 2*x2*x3^2 + 3*x2*x3 - 2*x3^2, 6*x1*x2^3 - 3*x1*x2^2*x3 - 4*x1*x2^2 + 2*x1*x2*x3 - 3*x2^2*x3 + x2*x3^2 + 4*x2*x3 - 2*x3^2]