The realization space is
  [1   1   0   0   1   1         0         1                 x1 - x2       x1 - x2    1]
  [0   1   1   0   0   1   x1 - x2   x1 - x2   x1*x2 + x2^3 - 2*x2^2   -x1*x2 + x1   x1]
  [0   0   0   1   1   1        x2        x2              x1*x2 - x2    -x2^2 + x2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal (-x1^2 + 2*x1*x2 + x2^3 - 2*x2^2)
avoiding the zero loci of the polynomials
RingElem[x1 - 1, x1^2 - 2*x1*x2 - x2^3 + x2^2, x1 + x2^2 - x2, x1, x1^2 - x1*x2 - x2^3 + 2*x2^2 - x2, x1^2 - x1*x2 - x2^3 + x2^2, x2 - 1, x1^3 - 3*x1^2*x2 - 2*x1*x2^3 + 4*x1*x2^2 + x2^4 - x2^3, x2, x1 + x2^2 - 2*x2, x1 - x2, x1 + x2 - 1, x1^3 - 3*x1^2*x2 - x1*x2^3 + 4*x1*x2^2 - x2^2, x1^2 - 3*x1*x2 - x2^3 + 3*x2^2, x1^2 - 2*x1*x2 - x2^3 + 3*x2^2 - x2, x1^3 - 3*x1^2*x2 - x1*x2^3 + 4*x1*x2^2 - x2^3, x1^3 - 3*x1^2*x2 - x1^2 - x1*x2^3 + 3*x1*x2^2 + 2*x1*x2 - x2^2, x1^2 - x1*x2 - x1 + x2^2, x1^3 - 2*x1^2*x2 - x1^2 - x1*x2^3 + 2*x1*x2^2 + x1*x2 + x2^3 - x2^2, x1^3 - 2*x1^2*x2 - x1*x2^3 + x1*x2^2 + x2^3, x1^2 - x1*x2^2 - x1*x2 + x2^2, x1^2 - 2*x1*x2 + x2, x1 - 2*x2, x1 - x2 - 1]