The realization space is
  [1   0   1   0   1    0   x2*x3 - x2 - x3                  1          x2*x3 - x2 - x3      x3    1]
  [0   1   1   0   0    1   x2*x3 - x2 - x3   -x2*x3 + x2 + x3   x2^2*x3 - x2^2 - x2*x3   x1*x2   x2]
  [0   0   0   1   1   -1               -x3                 x3                      -x3   x1*x3   x3]
in the multivariate polynomial ring in 3 variables over ZZ
within the vanishing set of the ideal
Ideal (x1*x2^2*x3 - x1*x2^2 + x1*x2*x3^2 - x1*x2*x3 - x1*x3^2 - x2*x3^2 + x2*x3 + x3^2)
avoiding the zero loci of the polynomials
RingElem[x1 - x3, x2, x2 + x3, x2 - 1, x3, x3 - 1, x2*x3 - x2 + x3^2 - 2*x3, x2 + x3 - 1, x1, x1*x2*x3 - x1*x2 - x1*x3 + x3, x1*x2^2*x3 - x1*x2^2 - 2*x1*x2*x3 + 2*x1*x2 + x1*x3 - x3, x1*x2*x3^2 - x1*x2 - x1*x3^2 - x2*x3^2 + x2*x3 + x3^2, x1*x2^2*x3 - x1*x2^2 + x1*x2*x3^2 - 2*x1*x2*x3 - x1*x3^2 - x2^2*x3^2 + x2^2*x3 + x2*x3^2 + x3^2, x1*x2*x3 - x1*x3 + x1 - x3, x1*x2 + x2*x3^2 - x2*x3 - x3^2, x1*x2 + x1*x3 + x2*x3^2 - x2*x3 - 2*x3^2, x1*x2 - x3, x1*x2^2*x3 - x1*x2^2 + x1*x2*x3^2 - 2*x1*x2*x3 - x1*x3^2 - x2*x3^2 + x2*x3 + 2*x3^2, x1*x2 + x1*x3 - x3, x1 - 1, x2*x3 - x2 - 2*x3 + 1, x2^2*x3 - x2^2 - x2*x3 - x3, x2*x3 - x2 - 2*x3, x2*x3 - x2 - x3]