The realization space is [0 1 1 0 0 1 1 1 1 x3 1] [1 0 1 1 0 1 -2*x1*x3^2 - x1*x3 + 3*x1 + x2^2*x3 - x2^2 + 3*x2*x3^2 - 4*x2*x3 + 2*x2 + x3^2 - x3 x1 x1 x2*x3 x2] [1 0 1 0 1 0 1 2*x1*x3^2 + x1*x3 - 2*x1 - x2^2*x3 + x2^2 - 3*x2*x3^2 + 4*x2*x3 - 2*x2 - x3^2 + x3 + 1 x3 2*x1*x3^2 + 2*x1*x3 - 2*x1 - x2^2*x3 + x2^2 - 3*x2*x3^2 + 3*x2*x3 - 2*x2 - x3^2 + x3 + 1 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal with 5 generators avoiding the zero loci of the polynomials RingElem[x1*x2 - x2^2 - 2*x2*x3 + 2*x2 + x3^2 - 1, x2, x2 - 1, x1*x2 + x1*x3 + x1 - x2^2 - 3*x2*x3 + x2, x1 - x2, x3, x3 - 1, x1*x2 + x1*x3 - x2^2 - 3*x2*x3 + 2*x2 + x3 - 1, x1*x2 + x1*x3 + x1 - x2^2 - 3*x2*x3 + x2 + x3 - 1, x1*x2^2 + x1*x2*x3 + x1*x3 - x2^3 - 3*x2^2*x3 + 2*x2^2 - x2, x1*x2^2 + x1*x2*x3 - x1*x2 - x1 - x2^3 - 3*x2^2*x3 + 3*x2^2 + 3*x2*x3 - 2*x2 - x3 + 1, x1*x2 + x1*x3 - x2^2 - 3*x2*x3 + 2*x2, x1*x2*x3 + x1*x3^2 + x1*x3 - x2^2*x3 - 3*x2*x3^2 + 2*x2*x3 - x2, x1*x2 + x1*x3 + x1 - x2^2 - 3*x2*x3 + 2*x2 - 1, x1*x2*x3 + x1*x3^2 + x1*x3 - x2^2*x3 - 3*x2*x3^2 + 2*x2*x3 - x2 - x3 + 1, x2 - x3 - 1, x2 - x3, x1*x2 - x1*x3 - x2^2 - x2*x3 + 2*x2 + x3^2 - 1, x1^2*x2 - x1*x2^2 - 2*x1*x2*x3 + 2*x1*x2 - x1 + x2*x3^2, x1^2*x2 - x1*x2^2 - 2*x1*x2*x3 + x1*x2 + x1*x3 - x1 + x2^2 + x2*x3^2 + x2*x3 - 2*x2 - x3^2 + 1, x1^2*x2 - x1*x2^2 - 2*x1*x2*x3 + x1*x2 - x1 + x2^2 + x2*x3^2 + 2*x2*x3 - 2*x2 - x3^2 + 1, x1^2*x2^2 + x1^2*x2*x3 - 2*x1*x2^3 - 6*x1*x2^2*x3 + 4*x1*x2^2 - x1*x2*x3^2 + 2*x1*x2*x3 - x1*x2 + x1*x3^3 + x1*x3^2 - 2*x1*x3 + x2^4 + 5*x2^3*x3 - 4*x2^3 + 5*x2^2*x3^2 - 10*x2^2*x3 + 5*x2^2 - 3*x2*x3^3 + x2*x3^2 + 4*x2*x3 - 2*x2, x1*x2*x3 - x1*x2 + x1*x3^2 + x1*x3 - x2^2*x3 + x2^2 - 3*x2*x3^2 + 3*x2*x3 - 2*x2 - x3 + 1, x1^2*x2 - x1*x2^2*x3 - x1*x2^2 - x1*x2*x3^2 - x1*x2*x3 + x1*x2 + x1*x3^2 + x1*x3 - x1 + x2^3*x3 + 3*x2^2*x3^2 - 3*x2^2*x3 + x2^2 - 3*x2*x3^2 + 4*x2*x3 - 2*x2 - x3 + 1, x1*x2*x3 - x1*x2 + x1*x3^2 - x2^2*x3 + x2^2 - 3*x2*x3^2 + 4*x2*x3 - 2*x2 - x3 + 1, x1^2*x2 - x1*x2^2*x3 - x1*x2^2 - x1*x2*x3^2 - x1*x2*x3 + x1*x2 + x1*x3^2 - x1 + x2^3*x3 + 3*x2^2*x3^2 - 3*x2^2*x3 + x2^2 - 3*x2*x3^2 + 5*x2*x3 - 2*x2 - x3 + 1, x1^2*x2^2 + x1^2*x2*x3 + x1^2*x2 - 2*x1*x2^3 - 6*x1*x2^2*x3 + 3*x1*x2^2 - 2*x1*x2*x3^2 + x1*x2 - x1*x3 - x1 + x2^4 + 5*x2^3*x3 - 4*x2^3 + 6*x2^2*x3^2 - 10*x2^2*x3 + 5*x2^2 + 4*x2*x3 - 2*x2, x1*x2 - x2^2 - 2*x2*x3 + 2*x2 + x3 - 1, x1*x2 - x2^2 - x2*x3 + 2*x2 - x3 - 1, x1*x2 - x2^2 - 2*x2*x3 + 2*x2 - 1, x1*x2 - x2^2 - x2*x3 + 2*x2 - 1, x1, x1 - 1, x1*x2*x3 + x1*x3^2 + x1*x3 - x1 - x2^2*x3 - 3*x2*x3^2 + 2*x2*x3 - x3 + 1, x1 - x3 - 1, x1 - x3, x1*x2 + x1*x3 + x1 - x2^2 - 3*x2*x3 + 2*x2 - 2, x1*x2 + x1*x3 - x2^2 - 3*x2*x3 + 2*x2 - 1, x1*x2 + x1*x3 + x1 - x2^2 - 3*x2*x3 + 2*x2]