The realization space is
  [0   1   1   0   0   1                                      x2^2 - x2                   x2^2 - x2   -x1^3*x2 - x1^3 - x1^2*x2^3 + 2*x1^2*x2^2 + x1^2*x2 + x1*x2^3 + x1*x2^2 - 2*x2^3                                     x1*x2 - x1 - x2^2 + x2                                     x1*x2 - x1 - x2^2 + x2]
  [1   0   1   1   0   1   -x1^2 - x1*x2^2 + 2*x1*x2 - x1 + 2*x2^2 - x2   -x1^2 + x1*x2 - x1 + x2^2                      x1^3*x2^2 - x1^3*x2 - x1^2*x2^3 + x1^2*x2 + x1*x2^3 - x1*x2^2   x1^3 + x1^2*x2^2 - 2*x1^2*x2 - x1*x2^2 + x1*x2 - x1 + x2   x1^3 + x1^2*x2^2 - 2*x1^2*x2 - x1*x2^2 + x1*x2 - x1 + x2]
  [1   0   1   0   1   0                                      x2^2 - x2             x1*x2^2 - x1*x2       x1^3*x2^2 + x1^3*x2 - 4*x1^2*x2^2 + 2*x1^2*x2 + x1*x2^3 - 3*x1*x2^2 + 2*x2^3                           x1^2*x2 - x1^2 - x1*x2^2 + x1*x2                              x1*x2^2 - x1*x2 - x2^3 + x2^2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal (x1^4 + x1^3*x2^2 - 2*x1^3*x2 + x1^3 - x1^2*x2^2 - x1^2*x2 + x2^3)
avoiding the zero loci of the polynomials
RingElem[x1 - x2, x1^2 + x1*x2^2 - 2*x1*x2 + x1 - x2, x1 - 1, x1^3 + x1^2*x2^2 - 2*x1^2*x2 - x1*x2^2 + x2^2, x1^2 + x1*x2^2 - 2*x1*x2 + x1 - x2^2, x1^3 + x1^2*x2^2 - 2*x1^2*x2 - 2*x1*x2^2 + x1*x2 + x2^3, x1^4 + x1^3*x2^2 - 2*x1^3*x2 - x1^3 - 3*x1^2*x2^2 + 4*x1^2*x2 - x1^2 + x1*x2^3 + x1*x2 - x2^2, x1^3 + x1^2*x2^2 - 2*x1^2*x2 - 2*x1*x2^2 + 2*x1*x2 - x1 + x2^3 - x2^2 + x2, x2 - 1, x1, x2, x1^6 + 2*x1^5*x2^2 - 4*x1^5*x2 + x1^4*x2^4 - 4*x1^4*x2^3 + 2*x1^4*x2^2 + x1^4*x2 - x1^4 - 2*x1^3*x2^4 + 5*x1^3*x2^3 - 2*x1^3*x2^2 + 3*x1^3*x2 + 2*x1^2*x2^4 - 3*x1^2*x2^3 + x1^2*x2^2 - x1^2*x2 + x1*x2^4 - 4*x1*x2^3 + x1*x2^2 - x2^5 + 2*x2^4, x1^4 + x1^3*x2^2 - 2*x1^3*x2 - x1^2*x2^2 + x1*x2 + x2^3 - x2^2, x1^4 + x1^3*x2^2 - 2*x1^3*x2 - x1^3 - 2*x1^2*x2^2 + 3*x1^2*x2 - x1^2 + x1*x2 + x1 + x2^3 - x2^2 - x2, x1^4 + x1^3*x2^2 - 2*x1^3*x2 - x1^2*x2^2 + x1^2*x2 - x1^2 - x1*x2^2 + 2*x1*x2 + x2^3 - x2^2, x1^6 + 2*x1^5*x2^2 - 4*x1^5*x2 + x1^4*x2^4 - 4*x1^4*x2^3 + 2*x1^4*x2^2 + 2*x1^4*x2 - 2*x1^4 - 2*x1^3*x2^4 + 6*x1^3*x2^3 - 7*x1^3*x2^2 + 8*x1^3*x2 - x1^3 + 4*x1^2*x2^3 - 7*x1^2*x2^2 + 2*x1^2*x2 + x1*x2^5 - 2*x1*x2^4 + x1*x2^3 - 2*x1*x2^2 - x2^5 + x2^4 + x2^3, x1^4 + x1^3*x2^2 - 2*x1^3*x2 + x1^3 - x1^2*x2^2 - x1^2*x2 + x1*x2^2 - x1*x2 + x2^2, x1^3 + x1^2*x2^2 - 3*x1^2*x2 + x1^2 - x1*x2 + x2^2, x1^3 + x1^2*x2^2 - 3*x1^2*x2 + x1^2 - x1 + x2, x1^4 + x1^3*x2^2 - 2*x1^3*x2 - x1^3 - 2*x1^2*x2^2 + 3*x1^2*x2 - x1^2 + 2*x1*x2 + x2^3 - 2*x2^2, x1^7 + 2*x1^6*x2^2 - 4*x1^6*x2 + x1^5*x2^4 - 4*x1^5*x2^3 + x1^5*x2^2 + 2*x1^5*x2 - x1^5 - 3*x1^4*x2^4 + 9*x1^4*x2^3 - 5*x1^4*x2^2 + 3*x1^4*x2 + x1^3*x2^5 - 2*x1^3*x2^3 + x1^3*x2^2 - x1^3*x2 - x1^2*x2^5 + 2*x1^2*x2^4 - 5*x1^2*x2^3 + 2*x1^2*x2^2 - 2*x1*x2^5 + 5*x1*x2^4 - 2*x1*x2^3 + x2^6 - 2*x2^5 + x2^4, x1^4 + x1^3*x2^2 - 2*x1^3*x2 - 2*x1^2*x2^2 + 2*x1^2*x2 - x1^2 + x1*x2^3 - 2*x1*x2^2 + 2*x1*x2 + x2^3 - x2^2, x1^3 + x1^2*x2^2 - 2*x1^2*x2 + x1^2 - x1*x2^2 + x2^3 - x2^2]