The realization space is
  [1    1   1   0   0   1    1   x1 + x2^2 - x2                  0   x1 + x2^2 - x2    1]
  [1   x2   0   1   0   1   x2                0          x2^2 - x2            x1*x2   x1]
  [0    0   0   0   1   1   x2             x2^2   x1 + x2^2 - 2*x2             x2^2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
avoiding the zero loci of the polynomials
RingElem[x1 + x2^2 - 2*x2, x2, x2 - 1, x1, x1 - x2, x1^2 + x1*x2^2 - 2*x1*x2 - x1 - x2^3 + 2*x2, x1^2 + x1*x2^2 - 3*x1*x2 - 2*x2^3 + 3*x2^2, x1 + x2^2 - x2, x1 + x2^2 - x2 - 1, x1^2 + x1*x2^2 - x1*x2 - x2^3 + x2^2, x1*x2 + x1 + x2^2 - 2*x2, 2*x1 + x2^2 - 2*x2, x1^2 - 2*x1*x2 - x2^3 + 2*x2^2, x1 - 1, x1 - 2*x2, x1^2 + 2*x1*x2^2 - 3*x1*x2 + 2*x2^4 - 4*x2^3 + 2*x2^2, x1^2 + 2*x1*x2^2 - 3*x1*x2 + x2^4 - 2*x2^3 + x2^2, x1^2 + x1*x2^2 - 2*x1*x2 + x2^4 - 2*x2^3 + x2^2, x1 + 2*x2^2 - 2*x2]