The realization space is
  [1   0   1   0   1    0                                        x1*x3 - x3                   x3                                        x1*x3 - x3    1    1]
  [0   1   1   0   0    1                                        x1*x3 - x3   x1*x2 - x2*x3 + x3                       -x1*x2 + x1*x3 + x2*x3 - x3   x2   x2]
  [0   0   0   1   1   -1   x1^2*x2 - 2*x1*x2*x3 + x1*x3^2 + x2*x3^2 - x3^2                x1*x3   x1^2*x2 - 2*x1*x2*x3 + x1*x3^2 + x2*x3^2 - x3^2   x1   x3]
in the multivariate polynomial ring in 3 variables over ZZ
within the vanishing set of the ideal
Ideal (x1^2*x2^2 - 2*x1*x2^2*x3 + x1*x2*x3^2 + x1*x2*x3 - x1*x3^2 + x2^2*x3^2 - 2*x2*x3^2 + x3^2)
avoiding the zero loci of the polynomials
RingElem[x2, x1 - x3, x2 - 1, x1^2*x2^2*x3 - x1^2*x2^2 - x1^2*x2*x3 - 2*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 + 2*x1*x2*x3^2 - x1*x3^3 + x2^2*x3^3 - x2^2*x3^2 - 2*x2*x3^3 + x3^3, x2 + x3, x1^2*x2^2 - 2*x1*x2^2*x3 + x1*x2*x3^2 - x1*x3^2 + x2^2*x3^2 - x2*x3^2 + x3^2, x1^2*x2^2*x3 - x1^2*x2^2 - 2*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 + x1*x2*x3^2 - x1*x2*x3 - x1*x3^3 + x2^2*x3^3 - x2^2*x3^2 - 2*x2*x3^3 + x2*x3^2 + x3^3, x1^2*x2^2*x3 - x1^2*x2^2 - x1^2*x3 - 2*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 + x1*x2*x3^2 - x1*x2*x3 - x1*x3^3 + x1*x3^2 + x1*x3 + x2^2*x3^3 - x2^2*x3^2 - 2*x2*x3^3 + x2*x3^2 + x3^3 - x3^2, x1^2*x2^2*x3^2 - 2*x1^2*x2^2*x3 + x1^2*x2^2 + x1^2*x2*x3 - 2*x1*x2^2*x3^3 + 4*x1*x2^2*x3^2 - 2*x1*x2^2*x3 + x1*x2*x3^4 - 3*x1*x2*x3^2 - x1*x3^4 + x1*x3^3 + x2^2*x3^4 - 2*x2^2*x3^3 + x2^2*x3^2 - 2*x2*x3^4 + 3*x2*x3^3 + x3^4 - x3^3, x1^2*x2^2*x3 - x1^2*x2^2 - x1^2*x2*x3 - x1^2*x3^2 - 2*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 + 2*x1*x2*x3^2 + x1*x3^2 + x2^2*x3^3 - x2^2*x3^2 - 2*x2*x3^3, x1^3*x2^3*x3 - x1^3*x2^3 - x1^3*x2^2*x3 - 3*x1^2*x2^3*x3^2 + 3*x1^2*x2^3*x3 + x1^2*x2^2*x3^3 + 3*x1^2*x2^2*x3^2 - 2*x1^2*x2*x3^3 + x1^2*x3^3 + 3*x1*x2^3*x3^3 - 3*x1*x2^3*x3^2 - x1*x2^2*x3^4 - 4*x1*x2^2*x3^3 + x1*x2*x3^4 + 3*x1*x2*x3^3 - 2*x1*x3^3 - x2^3*x3^4 + x2^3*x3^3 + 2*x2^2*x3^4 - x2*x3^4 - x2*x3^3 + x3^3, x1^2*x2 - 2*x1*x2*x3 + x1*x3^2 + x2*x3^2 - x3^2, x1^2*x2^2 - 2*x1*x2^2*x3 + x1*x2*x3^2 - x1*x2*x3 - x1*x3^2 + x1*x3 + x2^2*x3^2 - x2*x3^2 + x2*x3 + x3^2 - x3, x1^2*x2 - 3*x1*x2*x3 + x1*x3 + x2*x3^2 + x2*x3 - x3, x2 + x3 - 1, x3 - 1, x3, x1*x2 - x1*x3 - x2*x3 + x3, x1^2*x2 - 2*x1*x2*x3 - x1*x2 + x1*x3^2 + x2*x3^2 + x2*x3 - x3^2, x1*x2^2 + x1*x2*x3 - x1*x3^2 - x2^2*x3 - x2*x3^2 + x3^2, x1, x1 - 1, x1^2*x2^2 - x1^2*x3 - 2*x1*x2^2*x3 + x1*x2*x3^2 + x1*x3 + x2^2*x3^2 - x2*x3^2, x1^2*x2^2 - x1^2*x3 - 2*x1*x2^2*x3 + x1*x2*x3^2 - x1*x2*x3 + 2*x1*x3 + x2^2*x3^2 - x2*x3^2 + x2*x3 - x3, x1^2*x2 - x1^2*x3 - 3*x1*x2*x3 + x1*x3^2 + 2*x1*x3 + x2*x3^2 + x2*x3 - x3^2 - x3, x1 + x2, x1 + x2 - 1, x1^4*x2^3*x3 - x1^4*x2^3 - 4*x1^3*x2^3*x3^2 + 4*x1^3*x2^3*x3 + 2*x1^3*x2^2*x3^3 - x1^3*x2^2*x3 - x1^3*x2*x3^3 + x1^3*x2*x3^2 - x1^3*x3^3 + 6*x1^2*x2^3*x3^3 - 6*x1^2*x2^3*x3^2 - 4*x1^2*x2^2*x3^4 - 3*x1^2*x2^2*x3^3 + 4*x1^2*x2^2*x3^2 + x1^2*x2*x3^5 + 3*x1^2*x2*x3^4 - 2*x1^2*x2*x3^3 - x1^2*x2*x3^2 - x1^2*x3^5 + x1^2*x3^4 + 2*x1^2*x3^3 - 4*x1*x2^3*x3^4 + 4*x1*x2^3*x3^3 + 2*x1*x2^2*x3^5 + 6*x1*x2^2*x3^4 - 5*x1*x2^2*x3^3 - 4*x1*x2*x3^5 - x1*x2*x3^4 + 3*x1*x2*x3^3 + 2*x1*x3^5 - 2*x1*x3^4 - x1*x3^3 + x2^3*x3^5 - x2^3*x3^4 - 3*x2^2*x3^5 + 2*x2^2*x3^4 + 3*x2*x3^5 - 2*x2*x3^4 - x3^5 + x3^4, x1^2*x2 - 2*x1*x2*x3 + x1*x3^2 - x1*x3 + x2*x3^2 - x3^2 + x3, x1^2*x2^2 + x1^2*x2*x3 - 2*x1*x2^2*x3 - x1*x2*x3^2 + x1*x3^3 - x1*x3^2 + x2^2*x3^2 + x2*x3^3 - x2*x3^2 - x3^3 + x3^2, x1^2*x2^2*x3 - x1^2*x2^2 - x1^2*x2*x3 - 2*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 + x1*x2*x3^2 - x1*x3^3 + x1*x3^2 + x2^2*x3^3 - x2^2*x3^2 - 2*x2*x3^3 + x2*x3^2 + x3^3 - x3^2, x1^4*x2^3*x3 - x1^4*x2^3 - x1^4*x2^2*x3 - 4*x1^3*x2^3*x3^2 + 4*x1^3*x2^3*x3 + 2*x1^3*x2^2*x3^3 + x1^3*x2^2*x3^2 + x1^3*x2^2*x3 - 2*x1^3*x2*x3^3 + x1^3*x2*x3^2 + x1^3*x3^3 + 6*x1^2*x2^3*x3^3 - 6*x1^2*x2^3*x3^2 - 4*x1^2*x2^2*x3^4 - 2*x1^2*x2^2*x3^3 + x1^2*x2^2*x3^2 - x1^2*x2^2*x3 + x1^2*x2*x3^5 + 2*x1^2*x2*x3^4 + x1^2*x2*x3^3 - x1^2*x2*x3^2 - x1^2*x3^5 + x1^2*x3^4 - 3*x1^2*x3^3 - 4*x1*x2^3*x3^4 + 4*x1*x2^3*x3^3 + 2*x1*x2^2*x3^5 + 5*x1*x2^2*x3^4 - 5*x1*x2^2*x3^3 + 2*x1*x2^2*x3^2 - 4*x1*x2*x3^5 + x1*x2*x3^4 + 2*x1*x3^5 - 2*x1*x3^4 + 3*x1*x3^3 + x2^3*x3^5 - x2^3*x3^4 - 3*x2^2*x3^5 + 3*x2^2*x3^4 - x2^2*x3^3 + 3*x2*x3^5 - 3*x2*x3^4 + x2*x3^3 - x3^5 + x3^4 - x3^3, x1^2*x2^2*x3 - x1^2*x2^2 - x1^2*x3^2 - 2*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 - x1*x2*x3^2 + 2*x1*x3^2 + x2^2*x3^3 - x2^2*x3^2 - x2*x3^3 + x2*x3^2 - x3^2, x1^2*x2^2*x3 - x1^2*x2^2 - x1^2*x2*x3 - x1^2*x3^2 - 2*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 + x1*x2*x3^2 - x1*x3^3 + x1*x3^2 + x2^2*x3^3 - x2^2*x3^2 - 2*x2*x3^3 + x2*x3^2 + x3^3, x1^2*x2^2*x3 - x1^2*x2^2 - x1^2*x2*x3 - x1^2*x3^2 - 2*x1*x2^2*x3^2 + 2*x1*x2^2*x3 + x1*x2*x3^3 + x1*x2*x3^2 - x1*x3^3 + 2*x1*x3^2 + x2^2*x3^3 - x2^2*x3^2 - 2*x2*x3^3 + x2*x3^2 + x3^3 - x3^2, x2*x3 - x2 - x3, x1^2*x2 - 2*x1*x2*x3 + x1*x3^2 + x1*x3 + x2*x3^2 - x3^2 - x3]