The realization space is
  [1   1   0   0   1   1                             0                                                                x2 - x3                                                 x2 - x3                                                           x2 - x3                                                           x2 - x3]
  [0   1   1   0   0   1                        x3 - 1   x1*x2^2 - x1*x2*x3 + x1*x3 - x1 - x2^2*x3 - x2^2 + x2*x3 + 2*x2 - x3   x1*x2^2 - x1*x2*x3 + x1*x3 - x1 - x2^2*x3 + 2*x2 - x3   x1*x2*x3 - x1*x2 - x1*x3^2 + 2*x1*x3 - x1 - x2*x3^2 + 2*x2 - x3   x1*x2*x3 - x1*x2 - x1*x3^2 + 2*x1*x3 - x1 - x2*x3^2 + 2*x2 - x3]
  [0   0   0   1   1   1   -x1*x2 + x1*x3 + x2*x3 - x3                                                           x2^2 - x2*x3                                           x1*x2 - x1*x3                                                      x2^2 - x2*x3                                                      x2*x3 - x3^2]
in the multivariate polynomial ring in 3 variables over ZZ
within the vanishing set of the ideal
Ideal with 6 generators
avoiding the zero loci of the polynomials
RingElem[x1*x2*x3 - x1*x2 - x1*x3^2 + 2*x1*x3 - x1 - x2*x3^2 + 2*x2 - x3, x2 - x3, x3 - 1, x1*x2 - x1*x3 + x1 - x2*x3 - x2, x1*x2 - x1*x3 + x1 - x2*x3, x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + 2*x1^2*x3 - x1^2 - x1*x2^2*x3 + x1*x2 - x1*x3^2 + x1*x3 + x2^2*x3^2 - x2*x3, x1 - x3, x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + 2*x1^2*x3 - x1^2 - x1*x2^2*x3 + x1*x2^2 - 2*x1*x2*x3 + 3*x1*x2 - x1*x3 + x2^2*x3^2 - x2^2*x3 + x2*x3^2 - 2*x2*x3 + x3^2, x1^2*x2 - x1^2*x3 + x1^2 - x1*x2^2 - 2*x1*x2 + x2^2*x3 + x2*x3, x1^2*x2^2 - 2*x1^2*x2*x3 + x1^2*x2 + x1^2*x3^2 - x1^2*x3 - 2*x1*x2^2*x3 + 2*x1*x2*x3^2 - x1*x3^2 + 2*x1*x3 - x1 + x2^2*x3^2 - x2*x3^2 - x3^2 + x3, x1*x2 - x1*x3 + x1 - x2*x3 - 2*x2 + x3, x1^2*x2^2 - 2*x1^2*x2*x3 + x1^2*x2 + x1^2*x3^2 - x1^2*x3 - 2*x1*x2^2*x3 - x1*x2^2 + 2*x1*x2*x3^2 + x1*x2*x3 - x1*x3^2 + x1*x3 + x2^2*x3^2 + x2^2*x3 - x2*x3^2 - x2 - x3^2 + x3, x1^2*x2^2*x3 - x1^2*x2^2 - 2*x1^2*x2*x3^2 + 3*x1^2*x2*x3 - x1^2*x2 + x1^2*x3^3 - 2*x1^2*x3^2 + x1^2*x3 - 2*x1*x2^2*x3^2 + x1*x2^2*x3 + 2*x1*x2^2 + 2*x1*x2*x3^3 - x1*x2*x3^2 - 3*x1*x2*x3 - x1*x3^3 + 3*x1*x3^2 - x1*x3 + x2^2*x3^3 - 2*x2^2*x3 - x2*x3^3 + 2*x2*x3^2 + x2*x3 - x3^3, x1^2*x2^2 - 2*x1^2*x2*x3 + x1^2*x2 + x1^2*x3^2 - x1^2*x3 - 2*x1*x2^2*x3 - x1*x2^2 + 2*x1*x2*x3^2 + x1*x2*x3 - x1*x3^2 + x1*x3 + x2^2*x3^2 + x2^2*x3 - x2*x3^2 - x3^2, x1*x2 - x1*x3 - x2*x3 + x3, x1^2*x2^2*x3 - x1^2*x2^2 - 2*x1^2*x2*x3^2 + 3*x1^2*x2*x3 - x1^2*x2 + x1^2*x3^3 - 2*x1^2*x3^2 + x1^2*x3 - 2*x1*x2^2*x3^2 + x1*x2^2*x3 + 2*x1*x2^2 + 2*x1*x2*x3^3 - x1*x2*x3^2 - 3*x1*x2*x3 - x1*x3^3 + 3*x1*x3^2 - x1*x3 + x2^2*x3^3 - 2*x2^2*x3 - x2*x3^3 + 2*x2*x3^2 + x2 - x3^3 + x3^2 - x3, x1*x2*x3 - x1*x2 - x1*x3^2 + 2*x1*x3 - x1 - x2*x3^2 + x2*x3 + x2 - x3^2, x3, x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + 2*x1^2*x3 - x1^2 - x1*x2^3 + x1*x2^2*x3 - x1*x2*x3^2 - x1*x2*x3 + 3*x1*x2 - x1*x3 + x2^3*x3 - 2*x2^2 + x2*x3, x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + 2*x1^2*x3 - x1^2 - x1*x2^3 + x1*x2^2*x3 - x1*x2*x3^2 - x1*x2*x3 + 2*x1*x2 + x2^3*x3 - x2^2, x1 - x2, x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + 2*x1^2*x3 - x1^2 - x1*x2^3 + x1*x2^2*x3 + x1*x2^2 - x1*x2*x3^2 - 3*x1*x2*x3 + 4*x1*x2 + x1*x3^2 - 2*x1*x3 + x2^3*x3 - x2^2*x3 - 2*x2^2 + x2*x3^2 + x2*x3, x1^2*x2^2 - 2*x1^2*x2*x3 + x1^2*x2 + x1^2*x3^2 - x1^2*x3 - 2*x1*x2^2*x3 + 2*x1*x2*x3^2 - x1*x3^2 + 2*x1*x3 - x1 + x2^2*x3^2 - x2*x3^2 - x2*x3 + x2, x2, x2 - 1, x1^2*x2^2*x3 - x1^2*x2^2 - 2*x1^2*x2*x3^2 + 3*x1^2*x2*x3 - x1^2*x2 + x1^2*x3^3 - 2*x1^2*x3^2 + x1^2*x3 - 2*x1*x2^2*x3^2 + x1*x2^2*x3 + 2*x1*x2^2 + 2*x1*x2*x3^3 - x1*x2*x3^2 - 3*x1*x2*x3 - x1*x3^3 + 3*x1*x3^2 - x1*x3 + x2^2*x3^3 - x2^2*x3 - x2^2 - x2*x3^3 + 3*x2*x3 - x3^2, x1^2*x2^2 - 2*x1^2*x2*x3 + x1^2*x2 + x1^2*x3^2 - x1^2*x3 - 2*x1*x2^2*x3 - x1*x2^2 + 2*x1*x2*x3^2 + x1*x2*x3 - x1*x3^2 + x1*x3 + x2^2*x3^2 + x2^2*x3 + x2^2 - x2*x3^2 - 2*x2*x3, x1^2*x2^2*x3 - x1^2*x2^2 - 2*x1^2*x2*x3^2 + 3*x1^2*x2*x3 - x1^2*x2 + x1^2*x3^3 - 2*x1^2*x3^2 + x1^2*x3 - 2*x1*x2^2*x3^2 + x1*x2^2*x3 + 2*x1*x2^2 + 2*x1*x2*x3^3 - x1*x2*x3^2 - 3*x1*x2*x3 - x1*x3^3 + 3*x1*x3^2 - x1*x3 + x2^2*x3^3 - x2^2*x3 - x2^2 - x2*x3^3 + 2*x2*x3 + x2 - x3, x1^2*x2^2 - 2*x1^2*x2*x3 + x1^2*x2 + x1^2*x3^2 - x1^2*x3 - 2*x1*x2^2*x3 - x1*x2^2 + 2*x1*x2*x3^2 + x1*x2*x3 - x1*x3^2 + x1*x3 + x2^2*x3^2 + x2^2*x3 + x2^2 - x2*x3^2 - 2*x2*x3 - x2 + x3, x1*x2*x3 - x1*x2 - x1*x3^2 + 2*x1*x3 - x1 - x2^2 - x2*x3^2 + x2*x3 + 2*x2 - x3, x1*x2*x3 - x1*x2 - x1*x3^2 + 2*x1*x3 - x1 + x2^2 - x2*x3^2 - x2*x3 + x2, x1^2*x2^2 - x1^2*x2*x3 + x1^2*x3 - x1^2 - x1*x2^3 - x1*x2^2 + 3*x1*x2 - x1*x3 + x2^3*x3 - 2*x2^2 + x2*x3, x1^2*x2^2 - x1^2*x2*x3 + x1^2*x3 - x1^2 - x1*x2^3 - x1*x2^2 + 2*x1*x2 + x2^3*x3 - x2^2, x1*x2^2 - x1*x2*x3 + x1*x3 - x1 - x2^2*x3 + x2, x1^2*x2^3 - 2*x1^2*x2^2*x3 + x1^2*x2*x3^2 + x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + x1^2*x3 - 2*x1*x2^3*x3 + 2*x1*x2^2*x3^2 + x1*x2^2*x3 + 2*x1*x2^2 - 2*x1*x2*x3^2 - x1*x2*x3 - x1*x2 + x1*x3^2 + x2^3*x3^2 - x2^2*x3^2 - 2*x2^2*x3 + x2*x3^2 + 2*x2*x3 - x3^2, x1^2*x2^3 - 2*x1^2*x2^2*x3 + x1^2*x2*x3^2 + x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + x1^2*x3 - 2*x1*x2^3*x3 + 2*x1*x2^2*x3^2 + x1*x2^2*x3 + 2*x1*x2^2 - 2*x1*x2*x3^2 - x1*x2*x3 - x1*x2 + x1*x3^2 + x2^3*x3^2 - x2^2*x3^2 - 2*x2^2*x3 + x2*x3^2 + x2*x3 + x2 - x3, x1^2*x2^3 - 2*x1^2*x2^2*x3 + x1^2*x2*x3^2 + x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + x1^2*x3 - 2*x1*x2^3*x3 + 2*x1*x2^2*x3^2 + x1*x2^2*x3 + x1*x2^2 - 2*x1*x2*x3^2 + x1*x2*x3 - x1*x2 + x2^3*x3^2 - x2^2*x3^2 - x2^2*x3 + x2 + x3^2 - x3, x1*x2^2 - x1*x2*x3 - x1*x2 + 2*x1*x3 - x1 - x2^2*x3 + 2*x2 - x3, x1 - 1, x1*x2^2 - x1*x2*x3 + x1*x3 - x1 - x2^2*x3 + 2*x2 - x3, x1*x2^2 - x1*x2*x3 + x1*x2 - x1 - x2^2*x3 + x2, x1, x1^2*x2^3 - 2*x1^2*x2^2*x3 + x1^2*x2*x3^2 + x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + x1^2*x3 - 2*x1*x2^3*x3 - x1*x2^3 + 2*x1*x2^2*x3^2 + 3*x1*x2^2*x3 + x1*x2^2 - 3*x1*x2*x3^2 + x1*x3^2 - x1*x3 + x2^3*x3^2 + x2^3*x3 - 2*x2^2*x3^2 - x2^2*x3 - x2^2 + 2*x2*x3, x1^2*x2^3 - 2*x1^2*x2^2*x3 + x1^2*x2*x3^2 + x1^2*x2*x3 - x1^2*x2 - x1^2*x3^2 + x1^2*x3 - 2*x1*x2^3*x3 - x1*x2^3 + 2*x1*x2^2*x3^2 + 3*x1*x2^2*x3 + 2*x1*x2^2 - 3*x1*x2*x3^2 - 2*x1*x2*x3 + 2*x1*x3^2 - x1*x3 + x2^3*x3^2 + x2^3*x3 - 2*x2^2*x3^2 - 2*x2^2*x3 - x2^2 + x2*x3^2 + 2*x2*x3 + x2 - x3, x1*x2^2 - x1*x2*x3 + x1*x3 - x1 - x2^2*x3 - x2^2 + x2*x3 + 2*x2 - x3, x1*x2 - x1*x3 - x2*x3 + 2*x3 - 1, x1*x2 - x1*x3 - x2*x3 + 1]