The realization space is [0 1 1 0 0 1 x3^2 x3^2 x3 x3 1] [1 0 1 1 0 1 x1*x2 - x1 + x3 x2*x3^2 x1*x2 - x1 + x3 x1*x2 - x1 + x3 x2] [1 0 1 0 1 0 x3^2 -x1*x2 + x1 + x2*x3^2 + x3^2 - x3 x3^2 x1*x3 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal with 1 generator avoiding the zero loci of the polynomials RingElem[x2 - x3 - 1, x1 - x3, x2 - 1, x1*x2 - x1 - x2*x3 - x3^2 + 2*x3, x1*x2 - x1 - x2*x3^2 + x3^3 - x3^2 + x3, x3, x3 - 1, x2, x1*x2 - x1 - x2*x3^2 + x3, x1*x2 - x1 - x3^2 + x3, x2 - x3, x1*x2 - x1 + x3, x1, x1*x2*x3 - x1*x2 - x1*x3^2 - x1*x3 + x1 + 2*x3^2 - x3, x1^2*x2 - x1^2 - x1*x2*x3^2 + x1*x3^3 + x1*x3 - x3^3, x1*x2 + x1*x3^2 - x1 - x2*x3^2 - x3^2 + x3, x1 - 1, x1*x2 - x1*x3 - x1 + x3, x1 - x3^2, x1^2*x2 - x1^2 - x1*x2*x3^2 - x1*x3^2 + x1*x3 + x3^4, x1*x2 - x1 - x3^2, x1*x2 - x1 - 2*x3^2 + x3, x1*x2 - x1 - x2*x3^2 - x3^2 + x3]