The realization space is
  [1   0   1               x2   0   1    0             1               x2   x2    1]
  [0   1   1   x1 - x2^2 + x2   0   0    1             1   x1 - x2^2 + x2   x1   x1]
  [0   0   0                0   1   1   -1   x1 + x2 - 1             x2^2   x2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
avoiding the zero loci of the polynomials
RingElem[x2 - 1, x1 - x2^2 + x2, x1, x1 + x2, x1 - 1, x2, x1 + x2 - 1, x1*x2 - x1 + 2*x2^2 - x2, 2*x1*x2 - x1 - x2^3 + 2*x2^2 - x2, x1 - x2^2, x1 + x2 - 2, x1 - x2, x1*x2^2 - x1*x2 + x1 + x2^3 - 3*x2^2 + x2, x1 - x2^2 + x2 - 1, x1^2 - x1*x2^2 + 2*x1*x2 - 2*x1 - x2^3 + 2*x2^2 - x2, x1^2 - x1*x2^2 + 2*x1*x2 - 2*x1 - x2^3 + 3*x2^2 - x2]