The realization space is [1 0 1 x3 - 1 0 1 0 x2 x2*x3 - x2 1 1] [0 1 1 x1*x3 - x2 0 0 1 x2 x1*x2*x3 - x2^2 x1 x2] [0 0 0 0 1 1 -1 x3 x1*x3^2 - x1*x3 1 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal (x1^2*x3^2 - x1^2*x3 - x1*x2*x3 - x1*x3^2 + 2*x1*x3 + x2^2 - x2) avoiding the zero loci of the polynomials RingElem[x1*x3 - x2, x3 - 1, x1*x3 - x2 - x3 + 1, x1 - x2, x1, x1 - x2 - x3 + 1, x2 - 1, x3, x2 + x3 - 1, x2 + x3, x2, x1^2*x3^2 - x1^2*x3 - x1*x2*x3 + x2^2, x1^2*x3^2 - x1^2*x3 - x1*x2*x3 - x1*x3^2 + x1*x3 + x2^2 + x2*x3 - x2, x1*x2 + x1*x3^2 - x1*x3 - x2^2 - x2*x3 + x2, x2 - x3, x1 - 1, x1*x2 - x3, x1 + 1, x1*x2*x3 + x1*x3^2 - x1*x3 - x2^2 - x2*x3 + x2 - x3^2 + x3, x1*x2*x3 + x1*x3^2 - x1*x3 - x2^2, x1*x2*x3 - x2^2 - x2*x3 + x2 - x3^2 + x3, x1*x2*x3 - x1*x3^2 - x2^2 + x2]