The realization space is [1 1 0 1 0 0 x2*x3 + x3^2 x2 + x3 x2*x3 + x3^2 x2 + x3 1] [0 1 1 0 0 1 x1*x2^2*x3 + x1*x2*x3^2 + x1*x3^2 - x1*x3 - x2^3 + x2*x3 x2^2 + x2*x3 x1*x2*x3 + x1*x3^2 x1*x2 + x1*x3 x2] [0 0 0 1 1 -1 x2*x3 + x3^2 -x1*x2*x3 - x1*x3^2 + x1*x3 - x1 + x2^2 + 2*x2 + x3 x1*x2^2*x3 + x1*x2*x3^2 - x1*x2*x3 - x1*x3 - x2^3 + 2*x2*x3 + x3^2 -x1*x2*x3 - x1*x3^2 + x1*x3 - x1 + x2^2 + 2*x2 + x3 x3] in the multivariate polynomial ring in 3 variables over ZZ within the vanishing set of the ideal Ideal with 7 generators avoiding the zero loci of the polynomials RingElem[x1*x2^2*x3 + x1*x2*x3^2 + x1*x2 + x1*x3^2 - x2^3 - 2*x2^2 - x2*x3, x1*x2^2*x3 + x1*x2*x3^2 - x1*x2*x3 + x1*x2 + x1*x3 - x1 - x2^3 - x2^2 - 2*x2*x3 + 2*x2 - x3^2 + x3, x1*x2*x3 + x1*x3^2 - x1*x3 + x1 - x2^2 + x2*x3 - 2*x2 + x3^2 - x3, x1*x2*x3 + x1*x3^2 - x1*x3 - x2^2, x2 + 1, x1 - x2, x1*x2 + x1*x3 - x1 + 2*x2 + x3, x3 - 1, x1*x2^3*x3 + x1*x2^2*x3^2 - 2*x1*x2^2*x3 - 2*x1*x2*x3^2 - x1*x3^3 + x1*x3 - x2^4 + x2^3 + 2*x2^2*x3 + 2*x2*x3^2 - 2*x2*x3 + x3^3 - x3^2, x1*x2^2*x3 + x1*x2*x3^2 - x1*x2*x3 - x1*x3 - x2^3 - x2*x3^2 + 2*x2*x3 - x3^3 + x3^2, x2^2 - x3, x1*x2^2*x3 + x1*x2*x3^2 + x1*x3^2 - x1*x3 - x2^3 - x2^2*x3 - 2*x2*x3^2 + 2*x2*x3 - x3^3 + x3^2, x1*x2^2*x3 + x1*x2*x3^2 - x1*x2*x3 - x1*x3 - x2^3 + x2*x3, x2, x2 - 1, x1*x2^2*x3 + x1*x2*x3^2 + x1*x3^2 - x1*x3 - x2^3 - x2^2*x3 - x2*x3^2 + x2*x3, x1*x2^2*x3 + x1*x2*x3^2 + x1*x3^2 - x1*x3 - x2^3 - x2^2 - x2*x3 + x2 - x3^2 + x3, x1*x2^2*x3 + x1*x2*x3^2 + x1*x3^2 - x1*x3 - x2^3 + x2*x3, x2 + x3, x2 + x3 - 1, x3, x1, x1 - 1, x1*x2*x3 + x1*x3^2 - x1*x3 + x1 - x2^2 - 2*x2 - x3, x1*x2*x3 + x1*x3^2 - x1*x3 + x1 - x2^2 - x2, x1^2*x2^3*x3^2 + 2*x1^2*x2^2*x3^3 - x1^2*x2^2*x3^2 + x1^2*x2^2*x3 + x1^2*x2*x3^4 + x1^2*x3^4 - 2*x1^2*x3^3 + 2*x1^2*x3^2 - x1^2*x3 - 2*x1*x2^4*x3 - 2*x1*x2^3*x3^2 - x1*x2^3*x3 - x1*x2^3 - 3*x1*x2^2*x3^2 + 2*x1*x2^2*x3 - x1*x2*x3^2 + 3*x1*x2*x3 + x1*x3^2 + x2^5 + 2*x2^4 - 2*x2^2*x3 - x2*x3^2, x1^2*x2^3*x3^2 + 2*x1^2*x2^2*x3^3 - x1^2*x2^2*x3^2 + x1^2*x2^2*x3 + x1^2*x2*x3^4 + x1^2*x3^4 - 2*x1^2*x3^3 + 2*x1^2*x3^2 - x1^2*x3 - 2*x1*x2^4*x3 - 2*x1*x2^3*x3^2 - x1*x2^3*x3 - x1*x2^3 - 4*x1*x2^2*x3^2 + 2*x1*x2^2*x3 - 2*x1*x2*x3^3 + 2*x1*x2*x3 - x1*x3^4 + x1*x3^3 + x2^5 + 2*x2^4 + x2^3*x3 + x2^2*x3^2 - x2^2*x3, x1*x2*x3 - x1*x2 + x1*x3^2 - 2*x1*x3 + x1 - x2^2 - 2*x2 - x3, x1*x2*x3 - x1*x2 + x1*x3^2 - 2*x1*x3 + x1 - x2^2 - x2, x1^2*x2*x3^2 + x1^2*x3^3 - x1^2*x3^2 + x1^2*x3 + x1*x2^3*x3 + x1*x2^2*x3^2 - 2*x1*x2^2*x3 - 3*x1*x2*x3 - x1*x3^2 - x2^4 + 2*x2^2*x3 + x2*x3^2, x1^2*x2*x3^2 + x1^2*x3^3 - x1^2*x3^2 + x1^2*x3 + x1*x2^3*x3 + x1*x2^2*x3^2 - 2*x1*x2^2*x3 - 2*x1*x2*x3 - x2^4 + x2^2*x3, x1*x3 - x2, x1*x2^2*x3 + x1*x2*x3^2 + x1*x3^2 - x1*x3 - x2^3 + 2*x2*x3 + x3^2, x1*x2^2*x3 + x1*x2*x3^2 - x1*x2*x3 - x1*x3 - x2^3 + 2*x2*x3 + x3^2, x1^2*x2^3*x3^2 + 2*x1^2*x2^2*x3^3 - x1^2*x2^2*x3^2 + x1^2*x2^2*x3 + x1^2*x2*x3^4 + x1^2*x3^4 - 2*x1^2*x3^3 + 2*x1^2*x3^2 - x1^2*x3 - 2*x1*x2^4*x3 - 2*x1*x2^3*x3^2 - x1*x2^3*x3 - x1*x2^3 - 4*x1*x2^2*x3^2 + x1*x2^2*x3 - 2*x1*x2*x3^3 - 2*x1*x2*x3^2 + 2*x1*x2*x3 - x1*x3^4 + x2^5 + 2*x2^4 + 2*x2^3*x3 + 3*x2^2*x3^2 - x2^2*x3 + x2*x3^3, x1*x2*x3 + x1*x3^2 - x1*x3 + x1 - 2*x2^2 - x2*x3 - 2*x2 - x3, x1*x2*x3 + x1*x3^2 - x1*x3 + x1 - 2*x2^2 - x2*x3 - x2, x1*x2^2*x3 + x1*x2*x3^2 + x1*x3^2 - x1*x3 - x2^3 - x3^2]