The realization space is
  [1            x1*x2   1   0    1                 x1*x2               x2                  x1^2*x2   0    1    1]
  [1   x1^2 - x1 + x2   0   1   x1   x1^3 - x1^2 + x1*x2   x1^2 - x1 + x2      x1^3 - x1^2 + x1*x2   0   x1    0]
  [1   x1^2 - x1 + x2   0   0    1        x1^2 - x1 + x2                0   x1^2*x2 - x1*x2 + x2^2   1   x2   x2]
in the multivariate polynomial ring in 2 variables over ZZ
avoiding the zero loci of the polynomials
RingElem[x2 - 1, x1, x1^2 - x1*x2^2 - x1 + x2, x2, x1*x2 - x1 + x2, x1 - 1, x1^2 - x1 + x2, x1 - x2, x1^2*x2 - x1^2 - x1*x2 + x1 - x2, x1^2*x2^2 - 2*x1^2*x2 + x1^2 + 2*x1*x2 - x1 - 2*x2^2 + x2, x1^2*x2^2 - x1^2*x2 + x1^2 - x1*x2^2 + x1*x2 - x1 - x2^2 + x2, x1^2 - x1*x2^2 - x1 + x2^2 + x2, x1^2*x2 - x1^2 - x1*x2^2 - x1*x2 + x1 + x2^2 - x2, x1^2 - x1*x2^2 + x1*x2 - x1 - x2^2 + x2, x1 - x2^2 - x2, x1^2*x2 - 2*x1^2 + x1*x2 + x1 - x2, x1 - 2*x2]