
Abstract

In this brief talk, we’ll try to understand how far are we from answering the question: given
a closed 2n-manifold X and a closed 2-form ω, when is (X,ω) a symplectic manifold? Obvious
constrains are that ωn must induce an orientation and that M must admit a compatible almost
complex structure. Amazingly in dimension 2n ≥ 6 these are the only known constraints. In di-
mension 4, Taubes used the Seiberg-Witten invariants to provide new constrains. Time permitting
we will mention how to prove the symplectic Thom conjecture, which is about minimizing the genus
of a surface representing a given 2-homology class.

1 The canonical Spinc-structure

Proposition 1.1 ([4]). A Spinc-structure for an oriented vector bundle over X is equivalent (after
stabilizing if the fiber dimension is odd or ≤ 2) to a complex structure over the 2-skeleton X2 that can
be extended over the 3-skeleton.

Proof. We start by observing that the following lifting as a solution (See [4] page 48-49), i.e. there is
a map j : BU(n)→ BSpinc(2n) making the diagram commute.

BS1

BSpinc(2n)

BU(n) BSO(2n)Bi

This proves that every time we have an almost complex structure on our vector bundle, there is a
Spinc-structure that comes with it. Sadly there is no uniqueness in general, due to the fact that there
is a (unique) obstruction to it in H2(BU(n);π2(BS1)) ∼= H2(BU(n);Z).
Let us address the problem of comparing the obstruction for the existence of an almost complex
structure and Spinc-structure for our vector bundle over X. Let us fix some notation: let F =
hofib(BU(n)→ BSO(2n)). We start by observing that an almost complex structure always exists on
the second skeleton X2. In fact π1BU(n) = 0 therefore there are no local coefficients to deal with,
and π1BS

1 = 0 hence the fiber is k-simple for all k (See Davis and Kirk theorem 7.37) and there is
no obstruction for extending to the second skeleton. The extension is not necessarily unique.
Now consider the following commutative cube, given by universal property of the fiber.

F BS1

BU(n) BSpinc(2n)

∗ ∗

BSO(2n) BSO(2n)

∃! t

j

We claim that the map t : F → BS1 between the fibers is 3-connected. The proof is a straightforward
application of 5-lemma to the l.e.s. in homotopy for the two fibrations and map between them, together
with the fact that . Therefore, thanks to the naturality of the obstructions, we can compare the two
lifting problems on the lower skeletons at the same time: let oi ∈ H i(X;πi−1F ) be the obstruction to
extending the almost complex structure to the i-th skeleton of X. Similarly, let hi ∈ H i(X;πi−1BS

1)
be the obstruction of extending the Spinc-structure on Xi. By naturality and uniqueness we have that
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t∗oi = hi, and since the map t is 3-connected, the two extending problems up to the second skeleton
are equivalent. In general we observe that the unique obstruction for extending a Spinc-structure is
h3 ∈ H3(X;π2BS

1) ∼= H3(X;Z) and we have t∗o3 = h. Therefore we conclude that every time we
have an almost complex structure extending to the 3rd-skeleton we have a Spinc-structure on the
vector bundle. On the contrary, every time we have a Spinc-structure on the 2nd skeleton extending
to X3, we know that 0 = h3 ∈ H3(X;π2BS

1). But t∗ induces an isomorphism π2F → π2BS
1, hence

0 = h3 = t∗o3

Hence o3 = 0

Lemma 1.2. In the case of a closed, oriented 4-manifold X, if s is the Spinc-structure arising from
an almost complex structure, compatible with the given orientation, then d(s) = 0.

Proof. We first observe that c1(s) = c1(det(S+)) = −c1(T ∗X,J). This is due to the fact that for a
complex bundle c1(E) = c1(det(E)). In fact we have

c1(det(
even∧

T ∗0,1X)) = c1(
even∧

T ∗0,1X)

= c1(C⊕
2∧
T ∗0,1X) = c1(

2∧
T ∗0,1X)

= c1(det(T ∗0,1X)) = c1(T ∗0,1X)

= c1(T ∗X,−J) = −c1(T ∗X, J)

Since TX is complex,

p1(TX)[X] = (c1(TX)2 − 2c2(TX))[X] = c1(s)2[X]− 2χ(X)

so by Hirzebruch’s signature theorem, c1(s)2[X]− 2χ(X) = 3τ(X), hence d(s) = 0.

During the proof we observed that c1(det(T ∗X,J)) = c1(
∧2 T ∗0,1X).

Recall that a symplectic manifold, together with a Riemannian metric has a canonical almost
complex structure.

Definition 1.3 ([3] remark 3.2). The canonical Spinc-structure s0 is the one for which the positive
spinors S+ ∼= Λ0,0⊕Λ0,2, i.e. it arises as the canonical polarization of Λ•T ∗X, thus c1(s0) = −c1(KX),
where KX = det(T ∗X, Jcan) and c1(KX) is the canonical class of the symplectic structure

2 the Seiberg-Witten invariant

(This is taken from [1], page 396, section 10.3). After choosing a Spinc structure s on X, with
associated spinor bundles S± and determinant line bundle L, the object of interest in what follows
will be pairs

(ϕ,A)

where ϕ ∈ Γ(S+) is a self-dual spinor field and A ∈ Conn(L) is a U(1)-connection on L. Namely, we
will look at solutions (ϕ,A) to a couple of mildly-non-linear elliptic partial differential equations and
consider such solutions only up to the action of the gauge group G(L). The Seiberg-Witten equations
are: {

DA(ϕ) = 0

F+
A = σ(ϕ)

where DA is the Dirac operator induced by A, while FA is the imaginary-valued curvature 2-form of
A, and F+

A = 1
2(Fa + ∗FA) is its self-dual part. Finally, σ : S+ → iΛ2

+ is the squaring map.
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2.1 The moduli space

The solutions (ϕ,A) to the Seiberg-Witten equations are called (Seiberg-Witten) monopoles. The
monopoles form a subspace S inside the infinite dimensional configuration space Γ(S+) × Conn(L).
It’s easy to check that the SW equations are invariant under the action of the gauge group G(L) =
{g : M → S1}. Therefore S is a gauge-invariant slice of the configuration space. It thus makes sense
to factor everything by the action of the gauge group, hence obtaining the moduli space

M = S/G

obviously, this moduli space depends on the choices of Spinc-structure and Riemannian metric.
If b2(X)+ ≥ 1, then a solution of the SW equations necessarily have ϕ 6= 0 for generic choice of
Riemannian metric. In this case the action of G(L) is free, and hence the orbit space has a better
chance of being well-behaved. Indeed

1. They are closed orientable manifold

2. If b+2 (X) ≥ 1, then for a generic Riemannian metric, the Seiberg-Witten moduli space M is
either empty or is a smooth manifold of dimension

d(s) =
1

4

(
c1(s)2 − 2χ(X)− 3σ(X)

)
3. If b+2 (M) ≥ 2, then, for every two generic metrics g0 and g1 and every generic path gt connecting

them, all corresponding moduli spaces Mt are smooth manifolds, (possibly empty) and draw a
smooth cobordism between M0 and M1.

Having thus obtained from the Seiberg-Witten equations some very nice moduli spaces, it can be
further shown that the natural ambient of M, the space of all connection-and-spinor pairs modulo
gauge-equivalence, has the homotopy type of CP∞×T k where T k is the k-dimensional torus. Therefore
in the cohomology ring of this ambient here contains a copy of the polynomial ring Z[t] for a degree
2 class t. Hence if M is even-dimensional, then we can evaluate the appropriate class td/2 on it and
obtain a numerical invariant of X. Thus we call

swX(s) = 〈td/2, [M]〉

3 Taubes’ constraints

In general, on a symplectic manifold (X,ω), the canonical line bundle is the complex line bundle
KX = det(T ∗X, J) where J is a compatible almost complex structure (different J ’s result in isomorphic
line bundles).

Theorem 3.1 (Taubes). Let (X,ω) be a closed symplectic 4-manifold with b+ > 1. Then:

• There is a canonical solution (Acan, ϕcan) to the Dirac equation for scan. Moreover for τ > 0,
(Acan, τ

1/2ϕcan) (Taubes’ monopole) is a solution to the Seiberg Witten equations with 2-form

η(τ) = iF (A◦can)+ +
1

2
τω

• For τ sufficiently large, the Taubes monopole is the unique solution to Fη(τ) = 0 (modulo gauge),
and for generic J it is regular. One has

swX,σ(0) = 1

where 0 = c1(s0) and therefore swX,σ(c1(KX)) = (−1)1+b1+b+
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• If swX,σ(c) 6= 0 then one has
0 ≤ c · [ω] ≤ KX · [ω]

and if one of the inequality is an equality, then either c = 0 or c = KX .

We have the following remarkable corollary:

Corollary 3.2. Let (X,ω) be a closed symplectic 4-manifold with b+ > 1, then KX · [ω] ≥ 0.

This corollary is the starting point for a successful classification of 4-manifolds admitting symplectic
forms with KX · [ω] < 0 - they have b+ = 1, by the theorem. They turn out to be diffeomorphic to
certain complex surfaces, namely blow-ups of CP 2,CP 1 × CP 1, or ruled surfaces.
Taubes constraints are only the simpler part of the picture established by Taubes, in which SW
invariants are in fact counts of J-holomorphic curves in X. For instance, a deeper reason why c1(KX) ·
[ω] ≥ 0: it is that there exists a C∞-section of KX whose (transverse) zero-set S - an oriented surface
in X - is symplectic: ω|TS > 0.

4 The minimal genus problem

Let X be a closed, orientable 4-manifold, and σ ∈ H2(X;Z). We know that σ can be represented
as the fundamental class [Σ] of an oriented, embedded surface Σ ⊂ X.

Lemma 4.1. One can choose Σ to be path connected, and one can make its genus arbitrarily large.

We want to allow disconnected surfaces Σ =
∐

Σi, and to minimize the complexity

χ−(Σ) =
∑

g(
∑

i)>0

(2g(Σi)− 2)

over representatives Σ of σ (think of the complexity as minus the Euler characteristic)

Definition 4.2. Assume X is oriented with b+(X) > 1. A class c ∈ H2(X;Z) is called a basic class
if it arises as c1(s) for a Spinc-structure s such that swX,σ(s) 6= 0

Theorem 4.3. Assume X is oriented with b+(X) > 1, and suppose σ is represented by an embedded,
oriented surface Σ with non-negative normal bundle (that is, each component Σi has non-negative
self-intersection). Then, for every basic class c, one has

χ−(Σ) ≥ c · σ + σ · σ

Let us try to sketch the proof in the case Σ has trivial normal bundle.

Sketch of proof. The starting point is the Gauss-Bonnet formula, which tells us that for a metric h on
Σ, one has ∫

Σ
scal(h)volh = 4πχ(Σ)

the fact that c is a basic class tells us that, for any metric (and any self-dual 2-form η) the SW equations
admit a solution. The idea is to find a suitable metric on the boundary of a tubular nbhd of Σ, which
is diffeomorphic to Σ × S1 × [0, 1], such that Σ has constant scalar curvature and volh(Σ) = 1. Now
we will use a stretching argument somehow common in this kind of proofs. Let Xt be the manifold
obtained by stretching the neck, namely, replacing Σ × S1 × [0, 1] with Σ × S1 × [0, t] in the obvious
fashion and letting gt be the new metric. Of course Xt

∼= X1. The SW equations on (Xt, gt) admits
solutions for some Spinc-structure s with c1(s) = c. Now a standard argument gives the following
estimates on the L2-norm of the curvature Ft associated to a solution for the gt-SW equations for s

‖Ft‖Xt,gt ≤ 2πχ−(Σ)2t1/2 + C1/2
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where C is independent of t. On the other hand, another standard but lengthy argument gives the
following lower bound for any closed 2-form on Xt.

‖ω‖gt ≥ t1/2
∫

Σ
ω

now if we apply this relation for ω = Ft, together with the Chern-Weil identity c1(TX, J) = i
2π [Ft] we

obtain the following estimate
‖Ft‖Xt,gt ≥ 2πt1/2〈c, σ〉

which together with the first one gives

〈c, σ〉 ≤ χ−(Σ) +
C1/2

2πt1/2

by taking the limit for t→∞ we get the inequality

In order to prove the result for positive intersections, one blows up several times the surface Σ
in order to get a surface with zero self intersection and then use the fact that this operation doesn’t
change the genus of Σ together with the fact that the Seiberg-Witten invariants are well-behaved when
it comes to the blow-up procedure.
A generalization, allowing surfaces of negative self-intersection, is proved by P. Ozsváth and Z. Szabó
in [3].

Theorem 4.4. Suppose that b+(X) > 1 and that σ is represented by an embedded, oriented surface Σ
with non-negative normal bundle and without spherical components. If there exists a symplectic form
on X, compatible with the orientation, for which ω|TΣ > 0, then Σ minimizes χ− among representatives
of σ.

Proof. One can find an ω-compatible almost complex structure J such that J(TΣ) = TΣ. One then
has a short exact sequence of complex vector bundles

0→ TΣ→ TX|Σ → NΣ → 0

which implies that for each component Σi (with σi = [Σi]), one has

〈c1(TX), σi〉 = 〈c1(TΣi), σi〉+ 〈c1(NΣi), σi〉

which is to say
−χ(Σi) = 〈c1(KX), σi〉+ σi · σi

On the other hand, if b+(X) > 1, the fact that KX is a basic class (by Taubes) implies an adjunction
inequality

χ−(S) ≥ 〈c1(KX), σ〉+ σ · σ

in X, valid for any representatives S of σ, symplectic or not. Thus if the symplectic surface Σ has
no spherical components, we see that it saturates the adjunction inequality, and so minimizes the
complexity (if there are no spherical components, complexity is minus the euler characteristic).
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