
Abstract

This is a little review of the first part of the paper [1] of Stefan Bauer about refined Seiberg-
Witten invariants. All errors are mine and there is no claim of originality in this work.

1 the classical Seiberg-Witten invariant

Let X be a oriented closed 4 manifold. Let s be a Spinc-structure for it. Let S± be the positive and
negative Spinor bundles associated to it. Fix a Spinc-connection A on them, i.e. a unitary connection
on the Spinor bundle S ∼= S+ ⊕ S− which is compatible with the Levi-Civita connection on X, in the
sense that

AX(Y s) = (∇LCX Y )s+ Y AXs

for all vector fields X,Y and smooth sections s ∈ Γ(S). Recall the Seiberg-Witten equations can be
thought as a fibre preserving S1-equivariant map between these two S1-Hilbert bundles over H1(X;R):

Ã = (A+ i ker(d))×
(
Γ(S+)⊕H0(X;R)⊕ Ω1(X)

)
C̃ = (A+ i ker(d))×

(
Γ(S−)⊕ Ω0(X)⊕H1(X;R)⊕ Ω+(X)

)
The map µ̃ : Ã → C̃ is defined by

(A′, ϕ, f, a) 7→
(
A′, DA′ϕ+ iaϕ, d∗a+ f, aharm, d+a+ σ(ϕ)

)
. (1)

Here σ(ϕ) denotes the trace free endomorphism i(ϕ⊗ϕ∗− 1
2‖ϕ‖

2 id) of S+, considered via the map
ρ as a selfdual 2-form on X. Restricted to forms, the map is familiar from Hodge theory: It is linear,
injective with cokernel the space H+(X;R) of harmonic selfdual two-forms on X.

The Gauge group G = AutId(s) ∼= map(X,S1) acts on spinors on the 4-manifold via multiplication
with u : X → S1 and on Spinc-connections via addition of ud(u−1). It acts trivially on forms.

The map µ̃ is equivariant with respect to the action of G. Dividing by the free action of the pointed
gauge group we obtain the monopole map

µ = µ̃/G0 : A → C

as a fiber preserving map between the bundles A = Ã/G0 and C = C̃/G0 over Pics(X). The preimage
of the section (A′, 0, 0, 0, −F+

A′) of C, divided by the residual S1-action, is called the moduli space
of monopoles. The key fact about Seiberg-Witten theory is that the space of solutions with non-zero
spinor component (called irreducibles) is a closed orientable smooth manifold. For generic choice of
perturbations and metric, under the assumption b+ > 0, there are no reducible solution to the SW
equations and the irreducible ones are cut out transversely.

Claim 1.1. The moduli space of irreducible monopoles is a closed orientable manifold, denoted Mµ of
dimension d := indR(D) + (b1 − b+ − 1)

We are almost ready to define the SW-invariant for a manifold X. Let Birr(s) be the quotient
via the Gauge action of the irreducible configurations in A. Then a careful inspection reveals that
Birr(s) ' Pics(X)× PΓ(S+), hence

H∗(Birr(s);Z) ∼= H∗(Pics(X);Z)⊗ Z[t]

with |t| = 2. Then
swX,s := 〈td/2, [Mµ]〉

if d is even, otherwise they are set to be 0.
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2 Construction of the refined invariants

Before stating the theorem let us fix some notation: let E ,F be infinite dimensional Hilbert space
bundles over a compact base B. The structure group is the orthogonal group with its norm topology.
Consider the set of P(E ,F) of fiber-preserving continuous maps σ : E → F s.t. they are S1-equivariant
and such that the preimages of bounded sets are bounded. Now let l : E → F be a fixed fibrewise
Fredholm operator, define Pl(E ,F) ⊆ P(E ,F) to be the subspace consisting of elements ϕ such that
ϕ− l is fibrewise a compact map.

Now let p : F ∼= B×U → U be a trivialisation and suppose l : E → F is a continuous fiberwise linear
Fredholm map. Then there is a notion of index of a family for Fredholm operators ind(l) = E − U ,
where E = l−1(U). Think of U as representing the coker of l and E the kernel of l. The construction
ensure that U and E are both finite dimensional subbundles.
Now define

π0U (B; ind l) := {Σ−UTE, S0}U
We have equivariant counterparts for these notions.

Before proving the main theorem, we need to introduce a few technical results:

Lemma 2.1. Assume [ϕ] ∈ π0U (B; ind l) admits a representative ϕ : TE → SU which is not surjective,
then for some choice of trivialization p, [pϕ]+ = 0 in π0U (B; ind l).

Proof. By assumption there is a fiber (and hence a projection p) such that pϕ : TE → SU is not
surjective, therefore it’s nullhomotopic.

Lemma 2.2. Let ind l = F0(V ) − F1(V ). There exist finite dimensional linear G-subspaces V ⊂ H
such that the following hold:

1. For every y ∈ Y , the subspace V is mapped onto coker (ly : E′y → H). In particular, F0(V ) is a
bundle over Y and λ = F0(V )− F1(V ) represents the virtual index bundle ind(l).

2. For any G-linear W = W ′ + V with W ′ ⊂ V ⊥, the restricted map f(W )+ = (prH ◦ f)|+F0(W ) :

TF0(W )→ H+ misses the unit sphere S(W⊥).

3. The maps ρW f(W )+ and idW ′+ ∧ ρV f(V )+ are G-homotopic as pointed maps

F0(W )+ ∼= W ′
+ ∧ F0(V )+ →W ′

+ ∧ V + = W+.

Proof. This is Lemma 2.5 in [2]

Theorem 2.3. A projection p : F ∼= B × U → U induces a map

π0 (Pl(E ,F))→ π0U (B; ind l)

Proof. Let’s briefly sketch a proof of the theorem: An element ξ ∈ π0U (B; ind l) is represented by a
virtual bundle E − U over B, together with a map TE → SU . It may be necessary to suspend the
given map in order that it can be replaced by a homotopic map for which the preimage of the base
point consists only of the base point. In particular, ξ then is represented by a proper map E → U .
The given embedding of E into E and an identification of the orthogonal complements E⊥ ⊂ E and
U⊥ ⊂ F , results in an element of Pl(E ,F).
For a given element ϕ ∈ Pl(E ,F), choose a real number R > 0 and an ε with 0 < ε < R. The
boundedness property of ϕ implies that the preimage under pϕ of the ball of radius R in U is bounded
in E . Using compactness of B, this bounded preimage is mapped by the fiberwise compact operator
p ◦ (ϕ − l) into a compact subset of U . We may cover this image with finitely many ε-balls, the
centers of which generate a finite dimensional vector space U ⊂ U . After possibly enlarging U , we

2



can assume that the virtual bundle E − U with E = (pl)−1(U) represents ind l. The restriction pϕ|E
by construction misses the sphere SR(U⊥) of radius R in the orthogonal complement of U ⊂ U . This
map pϕ|E extends to the one-point completions to give a continuous map

TE → SU \ SR(U⊥).

Composition with a homotopy inverse to the inclusion SU → SU \ SR(U⊥) defines an element of
{T (ind l), S0}.

It remains of course to be checked that the two constructions lead to well defined maps between
the sets in the theorem which are inverse to each other. We will consider two cases: l surjective or
not. Assume that l : E → F is surjective. Then its index is simply ind l = [ker l] since the cokernel is
by assumption trivial and therefore the rank of the kernel is constant and they form a vector bundle.
By applying lemma 2.2 to our setting, we start with a map ξ : T ker l→ S0 and we consider ξ + l as a
result of our construction. Now after applying lemma 2.2 we can always restrict to [ker l] which gives
[ξ + l]|[ker l] = [ξ] hence proving that the second construction is inverse of the other. Now consider the
case where l is not surjective. This means that there is a point on a fiber of F which is not hit by l.
Consider the projection on that fiber, and repeating the same reasoning as before, we apply Lemma
2.1 to the homotopy class [ξ + l]+ : TE → SU to obtain an homotopy from it to [ξ]+.
To show that the second construction has as right inverse the first one, one has to construct paths in
Pl(E ,F) from an arbitrary element to an element, which can be “projected” onto the image of the
first construction. Such a path is made explicit through the following homotopy ϕt which starts from
ϕ = ϕ0 and ends at ϕ1. It is constant on a disk bundle of radius Q in E , which contains the preimage
of an R-disk bundle in F . Outside it is defined by

ϕt(e) =

(
|e|
Q

)t
ϕ

((
|e|
Q

)−t
e

)
. (2)

Notice then every compact map on a bounded set can be approximate uniformly by a finite rank map.
The same reason as before (divide in the two cases l surjective and not) applied to the finite rank map
proves the fact that this construction has right inverse.

There is an equivariant version of this theorem which works whenever we have an equivariant
projection p.

Remark 2.4. A Fredholm map ϕ ∈ Pl(E ,F), for which pϕ is not surjective, describes the zero element
in the stable cohomotopy group associated to its linearization l.

To see this, recall from the previous section that ϕ is proper. In particular, the image of pϕ is
a closed subset in U (B is compact hence p is closed, then by Theorem 1.4 in [4] a Fredholm map
is closed if and only if its proper. If a point u ∈ U is in the complement of the image, then so is
a whole ε-neighbourhood of u. Now apply the construction above for some R > |u| + ε and replace
ϕ by the homotopic ϕ1. We choose U so that it also contains u. The map pϕ1|E , followed by the
orthogonal projection to U is proper and by construction misses u. So its one-point compactification
is null homotopic.

Theorem 2.5. The monopole map µ : A → C defines an element in the equivariant stable cohomotopy
group

π0S1,U

(
Pics(X); ind(D)−H+(X;R)

)
.

For b+ > dim(Pics(X)) + 1, a homology orientation determines a homomorphism of this stable coho-
motopy group to Z, which maps [µ] to the integer valued Seiberg-Witten invariant.

We divide the proof in several claims:

Claim 2.6. The index of the linearization of µ is ind(D)−H+(X;R)
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Proof. it’s enough to consider the index of the Fredholm component of the monopole map, since it
coincides with the derivative up to zeroth-order operators which don’t influence the index. So let us
consider the map

DA ⊕ T := DA ⊕ d∗ + IdH0 ⊕ πharm ⊕ d+ : Γ(S+)⊕ Ω1(X)⊕H0(X;R)→ Γ(S−)⊕ Ω0(X)⊕H1(X;R)⊕ Ω+(X)

(ϕ, a, [f ]) 7→ (DAϕ, d
∗(a) + [f ], aharm, d

+(a))

The Dirac operator associated to the Spinc-structure s defines a virtual complex index bundle ind(D)
over the Picard torus. Observe that the other maps are defined and lands in spaces orthogonal to
Γ(S±), therefore we can study their index separately from ind(D). We start by observing that T is
injective. Let (a, [f ]) be in kerT . We can assume f to be harmonic, and since H0 ⊥ Imd∗, we have
that (a, f) ∈ kerT ⇒ f = 0. Now let (a, 0) ∈ kerT , in particular, using Hodge decomposition we can
write, uniquely, a = aharm + d∗ω+ dg. Notice that πharm, d

∗ and d+ act independently and exclusively
on aharm, dg and d∗ω respectively, due to the orthogonal decomposition and the fact that they vanish
on the other components. From d∗dg = 0 we have

0 = d∗dg = 〈d∗dg, g〉L2

= 〈dg, dg〉L2

= ‖dg‖L2

Hence dg = 0. Similarly, 0 = d+d∗ω implies dd∗ω = 0 (Theorem 2.1, L9 in [3]) and by the same
reasoning as before d∗ω = 0, hence (a, [f ]) ∈ kerT ⇔ a = 0, f = 0.
We now look at the cokernel. By the discussion about the Hodge decomposition and how the compo-
nent of T are independent of each other we can study those components separately. Immediately we
see that πharm is surjective so it won’t contribute to the cokernel. Again by the Hodge decomposition,
d∗ + IdH0 is surjective, while the cokernel of d+ is by definition

Ω+(X)

Imd+
= H+ ∼= H+(X;R)

proving the claim.

Let’s define the homomorphism of the stable cohomotopy group to Z. An element of the stable
cohomotopy group is represented by an equivariant map f : TE → SU from the Thom space of a
bundle E over Pics(X), where E−U = ind l is the index of the linearisation l of µ. Let Ci denote the
mapping cone of the inclusion i : TES

1 → TE of the S1-fixed point set. In the long exact sequence
associated to the cofiber sequence TES

1 → TE → Ci,

π−1
S1,U (Σ−U (TES

1
))→ π0S1,U (Σ−UCi)→ π0S1,U (Σ−UTE)→ π0S1,U (Σ−U (TES

1
)) (3)

Claim 2.7. π−1
S1,U (Σ−U (TES

1
)) = 0, similarly π0S1,U (Σ−U (TES

1
)) = 0.

Proof. We observe that by definition π−1
S1,U (Σ−U (TES

1
)) = [S1 ∧ TES1

, SU ] where the U comes from

the representation of the index of l as formal difference E − U . Now recall that the action of S1 on
Γ(S) is free, given by multiplication, hence they don’t contribute to the fixed point sets. Therefore
TES

1
is simply the component of the Thom space of the index arising from the kernel of T since the

action there is trivial by definition. Since we proved that the map is injective, TES
1

= Pics(X)S
1

+

which has dimension b1. Similarly we see that the fixed points in SU have dimension b+ since only
the coker of T contributes to the fixed points. Now using the assumption b+ − b1 − 1 > 0 by cellular
approximation we have the claim for the first group. The proof for the last group is done in the same
way.
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So the map µ ∈ π0S1,U (Σ−UTE) can be described by a cohomotopy element of Σ−UCi. The

Hurewicz image h(µ) of this element in equivariant Borel-cohomology lies in the relative group
H0
S1(Σ−UTE,Σ−UTES

1
). The S1-action on the pair of spaces (TE, TES

1
) is relatively free. So

its equivariant cohomology group identifies with the singular cohomology H∗(TE/S1, TES
1
) of the

quotient. After replacing TES
1

by a tubular neighbourhood, this is the singular cohomology of a
connected manifold relative to its boundary.
In fact, using the injectiviness of T and the fact that the action is free on the positive spinors, we
see that after we remove the zero section the action on each fibre is free and given by multiplication.
Notice that we can write E \ 0 ' S(E)× R>0, which can be rescaled in E \ 0 ' S(E)× (0, 1). Since
the action of S1 doesn’t change the norm of our vectors, the action of S1 is free on the first factor and
trivial on the second. When we consider the orbit we get (E \ 0)S1 ' P (E)× R>0. After we include
back the fixed point set it’s immediate to see that we get (TE/S1, TES

1
) ∼ (P (E)× I, P (E)×{0, 1})

proving the claim.

Claim 2.8. There is a generator in the top degree of H∗S1(Σ−UTE,Σ−UTES
1
)

Proof. An orientation of Pics(X) together with the standard orientation of complex vector bundles
defines an orientation [TE/S1, TES

1
] =: [TE]S1 in the top cohomology of this manifold. Similarly,

the chosen homology orientation of X and the orientation of Pics(X) determine the orientation of U
and thus a generator Σ−U [TE]S1 of the graded cohomology group H∗S1(Σ−UTE,Σ−UTES

1
) in its top

degree ∗ = k.

Claim 2.9. The top degree k is such that k = indR(DA) + (b1 − b+ − 1) A is any chosen Spinc-
connection.

Proof. We have to compute the dimension of the manifold whose cohomology ring isH∗(Σ−UTE/S1,Σ−UTES
1
).

For simplicity assume that the Dirac operator is surjective. This means that dimCE = indCD. There-
fore we have dimR P (E) = 2(indCD−1)+b1 = indRD−2+b1 since we have to factor in the dimension
of the base space (the Picard torus). Now dimR(P (E) × I) = indRD − 1 + b1. Now we have to
desuspend which lowers the degree in cohomology by dimH+ = b+ (recall that D is assumed to be
surjective), hence we get k = indR(D) + (b1 − b+ − 1). If D is non surjective the result still holds
since the difference between the coker and ker of D is constant and equal to indCD, and first we add
the dimension of the kernel and then when we desuspend we subtract the dimension of the cokernel,
hence only the index of D really matter.

This is great news, since the classical Seiberg-Witten invariants are obtaining as the pairing in this
exactly same degree.
Observe that H∗S1(Σ−UTE,Σ−UTES

1
) is a module over the coefficient ring H∗S1(∗) ∼= Z[t], where t

has degree 2. Now let us define

sw′X,σ =

{
0 if k is odd

〈tk/2h(µ),Σ−U [TE]S1〉 if k is even

Claim 2.10. sw′X,σ = swX,σ

Proof. We only need to prove that when k is even, 〈tk/2h(µ),Σ−U [TE]S1〉 = 〈tk/2, [Mµ]〉 because this
is the original definition of the Seiberg-Witten invariants. But this is a consequence of the geometric
interpretation of the Hurewicz map and Poincarè duality. In fact ΣUh(µ) = µ∗[SU ] = µ∗[U,U \ 0] =
[νMµ , νMµ \Mµ] (naturality of the Thom class). But now

[νMµ , νMµ \Mµ] _ [TE]S1 = [Mµ]

(Ex. 11-C in Milnor’s Characteristic classes, recall that Mµ = µ−1(0) - with a little abuse of notation)
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