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Abstract

We will give proof of the non-squeezing theorem by using pseudo-holomorphic curves and

Gromov-Witten flavoured techniques. We will blackbox some analytical facts about the smooth

structure of some moduli spaces of solutions since they are lengthy but standard argument that

can be found on the standard literature about this topic. Modulo these results, no particular prior

knowledge is assumed. I will follow closely an exposition of John Pardon (errors are all mine),

pictures were made by Jackson van Dyke and used here with his permission.

1 Some background

Definition 1.1. A symplectic form on a manifold M2n
is a closed 2-form ! which, when viewed as a

pairing

! : TM ⌦ TM ! R
is non-degenerate (i.e. the induced map TM ! TM_

is an isomorphism.) and skew-symmetric.

Example 1.2. R2n
with standard basis {x1, · · · , xn, y1, · · · , yn} is a symplectic manifold with the sym-

plectic form

!std :=

nX

i=1

dxi ^ dyi (1)

Theorem 1.3 (Darboux). For any symplectic manifold M and point p 2 M , there exists a function
f : U ! M , (di↵eomorphic onto its image), where U ✓ R2n is open, p 2 f (u), and f⇤

(!M ) = !std.

Define the symplectomorphisms Di↵0 (M,!) to consist of the di↵eomorphisms preserving the sym-

plectic form. Of course this is contained inside Di↵0 (M,!n
), which are volume preserving. Explicitly,

the symplectomorphisms consist of the identity component of

{f : M ! M | f⇤! = !}0 ✓ {f : M ! M | f⇤
(!n

) = !n} (2)

2 The non squeezing theorem

We introduce the following notation:

B2n
(r) :=

n
(x1, · · · , xn, y1, · · · , yn) 2 R2n |

X
x2i + y2i  r2

o

B2
(R)⇥ R2n�2

:=
�
(x1, · · · , xn, y1, · · · , yn) | x21 + y21  R2

 

The theorem we will try to prove is the following

Theorem 2.1 (Eliashberg, Caley-Zehnder, Gromov - all independently). If there exists a symplectic
embedding:

B2n
(r) ! B2

(R)⇥ R2n�2

then r  R
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2.1 Pseudo-holomorphic curves

To prove Theorem 2.1 we introduce the following notions:

Definition 2.2. An almost complex structure (acs) on M2n
is an endomorphism J : TM ! TM such

that J2
= � Id.

Equivalently this is putting the structure of a C-vector space on TM , and then J is just multipli-

cation by i.
An acs J is said to be tamed by ! i↵ !(v, Jv) > 0, for all nonzero v 2 TM . J is said to be compatible

with ! i↵ (v, w) 7! !(v, Jw) is a Riemannian metric, that is, it is symmetric and positive definite.

Clearly compatible implies tame. We will work with this assumption all time.

Definition 2.3. A pseudo-holomorphic (or J-holomorphic, or (J, j⌃)-holomorphic) curve is a smooth

map u : ⌃ ! M , where ⌃ is a Riemann surface with the canonical complex structure j⌃ such that

du � j⌃ = J � du

2.2 Proof of the non-squeezing theorem

Assume that there exists a symplectic embedding

f : B2n
(r) ! B2

(R)⇥ R2n�2

WLOG we can assume that Im(f) is contained in a compact subset of Int(B2
(R) ⇥ R2n�2

). In fact,

assume that the image of B2n
(R) is not contained in the interior (hence it touches @B2

(R)), then by

restricting to B2n
(r0) ⇢ B2n

(r) (i.e. r0 < r) then we can assume that the image lies in the interior

(it’s an embedding!). Notice that if we prove that for any r0 < r, r0 < R then it must be that r < R.

This is going to be our strategy

Notice that we immediately have that Im(f) is a compact subset of the interior of the cylinder, hence

there must be an N > 0 such that the we have an embedding

f : B2n
(r) ,! B2

(R)⇥
�
R2n�2/NZ2n�2

�
(3)

We now write R2n�2/NZ2n�2
= T 2n�2

, and further embed

f : B2n
(r) ,! B2

(R)⇥
�
R2n�2/NZ2n�2

�
! S2 ⇥ T 2n�2

(4)

where S2
is the sphere with the same area of the disk B2

(r) obtained by collapsing the boundary. The

fact that it is still an embedding is due to the fact we assumed that Im(f) is contained in the interior

of the cylinder. All together we have a symplectic embedding

f : B2n
(r) ,!

�
S2 ⇥ T 2n�2,!S2 + !T 2n�2

�
(5)

Now equip S2 ⇥ T 2n�2
with a product acs J = JS2 � JT 2n�2 , so it is biholomorphic to CP 1 ⇥�

Cn�1/Z2n�2
�
as a complex manifold. Now consider the following moduli space

M0,1(S
2 ⇥ T 2n�2, 0, J) := {u : CP 1 ! S2 ⇥ T 2n�2 | du is C linear}/ ⇠ (6)

where u ⇠ u � � | � : CP 1 ! CP 1
is an element in PGL2(C) (i.e. an automorphism of the Riemann

sphere) which preserve the origin 0 2 C ⇢ C [ {1}.
If we have a map

u : CP 1 ! CP 1 ⇥
�
Cn�1/Z2n�2

�
(7)

this splits as:

u = (u1, u2) u1 : CP 1 ! CP 1 u2 : CP 1 ! Cn�1/Z2n�2
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Now, since ⇡1(CP 1
) = 0, we always have a lift

Cn�1

CP 1 Cn�1/Z2n�2

⇡

u2

(8)

Therefore by Liouville’s theorem, u2 is constant.

We have an obvious foliation by holomorphic CP 1
as in fig. 1. with respect to this acs

Figure 1: Foliation by holomorphic CP 1
.

J0 = JCP 1 � JCn�1/Z2n�2 (9)

Now let

M0,1(S
2 ⇥ T 2n�2, 0, d[S2

]⇥ [pt.]) ✓ M0,1(S
2 ⇥ T 2n�2, 0) (10)

be the subset of pseudo-holomorphic curves with u⇤[CP 1
] = d[S2

] ⇥ [pt.]. In particular, by taking

d = 1 we focus on M0,1(S2 ⇥ T 2n�2, 0, [S2
]⇥ [pt.]). We have an evaluation map

ev: M0,1(S
2 ⇥ T 2n�2, 0, [S2

]⇥ [pt.]) ! S2 ⇥ T 2n�2

[u] 7! u(0)

Let us call J1 the acs on S2 ⇥ T 2n�2
which agrees with f⇤Jstd over Im(f).

Figure 2: Foliation by J1-holomorphic CP 1
.

It’s a classical result that the space of !-compatible almost complex structure is nonempty and

contractible. Therefore we can choose a path of complex structures {Jt}t2[0,1] between J0 and J1.
Now the collection of t 2 [0, 1], such that 1-pointed genus 0, curve in S2 ⇥ T 2n�2

with respect to Jt
representing the class [S2

]⇥ [pt.] projects as
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M0,1(S2 ⇥ T 2n�2, 0, [S2
]⇥ [pt.], {Jt})

[0, 1]

⇡

To continue we need to appeal to some big non-trivial results about moduli spaces of holomorphic

curves:

1. Gromov compactness: ⇡ is proper

2. For generic choice of J1 and {Jt}t, the total space space is a manifold with boundary ⇡�1
(0) [

⇡�1
(1).

Claim 2.4. We have that the evaluation map induces a di↵eomorphism ⇡�1
(0) ⇠= S2 ⇥ T 2n�2

Proof. We will focus on proving that the evaluation map is a bijection and we will deal with the

topology later. First notice that fig. 1 basically proves that the evaluation map is surjective: for every

(x, y) 2 S2 ⇥ T 2n�2
, the embedding at height y

CP 1 ! S2 ⇥ T 2n�2

x 7! (x, y)

provides a perfectly nice J0-hol sphere with marked point (0, y). By using elements in PGL2(C)
we can manage to send 0 to every point (x, y). This proves that the evaluation map is surjective.

Injectivity requires a little bit more of work: first notice that we are working with degree 1 maps

u : CP 1 ! CP 1
thanks to the observation in 8. Being degree 1, u must be surjective. At every regular

point u must be injective as well, since they are orientation preserving and the sum (with sign) of the

preimages of any regular value must be 1. Since we are working with the standard (i.e. integrable)

a.c.s. u is holomorphic, therefore is an open map. This implies that u is injective everywhere, hence a

biholomorphism. Therefore if u, u0 : CP 1 ! CP 1
are two J0-holomorphic curves with u(0) = u0(0) = ⇤,

then we have

u = u0 � u0�1 � u
= u0 � �

for � 2 PGL2(C) with �(0) = 0, proving that they belong to the same equivalence class. By choosing

the correct topology on our moduli space the evaluation map can be shown to be continuous, hence an

homeomorphism (recall we assumed our moduli space to be compact). Smoothness is done similarly.

Now consider the evaluation map ev. We know ev⇤[⇡�1
(0)] = [S2 ⇥ T 2n�2

], but we have this

cobordism, so actually ev⇤[⇡�1
(1)] = ev⇤[⇡�1

(0)]. In particular this implies that

ev: M0,1(S
2 ⇥ T 2n�2, 0, [S2

]⇥ [pt.], J1) ! S2 ⇥ T 2n�2

is surjective.

Consider a holomorphic curve u : CP 1 ! S2 ⇥ T 2n�2
which passes through f(0) where f is our

embedding. We have therefore actually produced a curve v : ⌃ ! B2n
(r) (by pull back) passing

through the origin, where ⌃ is as in the following diagram:

⌃ := u�1
�
f(B2n

(r))
�

CP 1

B2n
(r) S2 ⇥ T 2n�2

v u

f
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where v is proper, since it’s the pullback of the proper map u. The picture here is as in fig. 3

Figure 3: The curve v(⌃) on B2n
(r)

Now we have the following inequalities:

Area(v(⌃)) =

Z

⌃
v⇤! (11)


Z

CP 1
u⇤! (12)

= hu⇤[CP 1
], [!]i (13)

= Area(S2
) = Area

�
B2

(R)
�
= ⇡R2

(14)

Now the last ingredient is the following:

Proposition 2.5 (Monotonicity). If v : ⌃ ! B2n
(r) ✓ Cn is a proper, non-constant, holomorphic

(with respect to Jstd) map covering the origin, then

Z

⌃
v⇤! � ⇡r2 (15)

We will divide the proof in three steps

Claim 2.6. For any orientable surface �(r) ⇢ B2n
(r) whose boundary lies in S2n�1

(r) we have

d

dr
A(r) � L(r) � 2A(r)

r
(16)

where A(r) is the symplectic area of �(r) and L(r) the length of @�(r) = �(r).

Proof. Since the disk is an exact symplectic manifold, with Liouville form � =
1
2xidyi�yidxi we have,

by Stokes, that

A(r) :=

Z

�(r)
! =

Z

�(r)
� (17)
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Therefore we can divide by r and obtain

A(r)

r
=

Z

�(r)

1

r
� (18)

=

Z

�(r)
!(1rV�,�) (19)

=

Z

[0,2⇡]
!(1rV�, ˙�(r))dt (20)

=

Z

[0,2⇡]
h�J 1

rV�, ˙�(r)idt (21)

 1

2
L(r) (22)

where in Passage (19) we used the definition of the Liouville vector field. In (21) we used the fact that

the metric is chosen to be compatible with the symplectic structure. The last passage (22) we made

use of the fact that the Liouville vector field is radially expanding from the origin of the disk and we

have a normalization factor of 1/r that we are carrying around. The 2 comes from the fact that the

Liouville form has a 1/2 in its definition. By rotating such vector field by ⇡/2 (e↵ect of �J) we get

the upper bound.

The other inequality is proved as followed. Let ✏ > 0, we want to estimate A(r+ ✏)�A(r) from below.

Using the tubular neighbourhood theorem we can find a local parametrization for �(r) around �(r)
(which cover �(r+✏) as well). Let us denote it as �(✓, t) where ✓ 2 [0, 2⇡] is a parametrization for �(r)
(and its translates) and t 2 [0, 1] is the normal direction (remember that the tubular neighbourhood

of �(r) ⇢ �(r) is trivial since it’s orientable.

Notice that we can compute the area of the shell A(r + ✏)�A(r) as the integral

A(r + ✏)�A(r) =

Z

[0,2⇡]⇥[0,1]
�(✓, t)d✓dt (23)

Now via Fubini’s theorem we have

A(r + ✏)�A(r) =

Z

[0,2⇡]

Z

[0,1]
�(✓, t)d✓dt (24)

 L(r)✏ (25)

since every vertical segment (i.e. �(✓, [0, 1]) � ✏ since that’s the shortest path from a point on S(r) to
a point in S(r + ✏). Therefore by taking the limit for ✏ ! 0 we have the required inequality

Claim 2.7. If a loop in S2n�1
(r) has length strictly less than 2⇡r, then it’s contained in some open

hemisphere of the sphere

Proof. See https://math.stackexchange.com/questions/1805648/

Proof of Prop. 2.5. It’s a standard fact about J-holomorphic curves that they are the area minimizing

surfaces among surfaces that shares the same boundary. Moreover their symplectic area coincides with

the geometrical one. Since by construction we know that v passes through the origin, by Claim 2.7

we know it must have L(r) � 2⇡r. by integrating over [0, r] the left inequality given in Claim 2.6 we

get that A(r) � ⇡r2, concluding the proof

Now the upper bound given by (14) and the lower bound given by Gromov’s monotonicity (Prop

2.5) implies that r  R, concluding the proof of the non-squeezing theorem.
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