Worksheet 1.5.1 and 1.5.2 - Math 455

- 1. Find a planar representation of $K_{2,3}$.
- 2. Draw a planar graph in which every vertex has degree exactly 5.
- 3. Let G_1 and G_2 be two planar graphs with n vertices, q edges, and r regions. Must they be isomorphic?
- 4. How many regions are in a connected planar graph G of order 24 and regular degree 3?
- 5. Let G be a connected planar graph of order less than 12. Prove that $\delta(G) \leq 4$.
- 6. Prove that Euler's formula fails for disconnected graph.
- 7. Let G be of order $n \ge 11$. Show that at least one of G and \overline{G} is nonplanar.
- 8. Show that there is no polyhedron with 5 vertices such that each pair of vertices is connected by an edge.
- 9. For a regular tetrahedron, take the midpoint of each of the 6 edges. Show that the solid whose vertices are those points is a regular octahedron.
- 10. Let F_k be the number of faces of a polyhedron P that are k-gons. For a simple polyhedron, i.e., a polyhedron where every vertex has degree 3, show that $3F_3 + 2F_4 + F_5 F_7 2F_8 3F_9 \ldots = 12$.

Hints:

- 1. You only need to move one vertex.
- 2. Think of Platonic solids.
- 3. Find a counterexample.
- 4. How many edges does such a graph have?
- 5. Adapt the proof of $\delta(G) \leq 5$.
- 6. Give an example.
- 7. What can you say about the number of edges in G and \overline{G} ? Use the theorem that states that if G is planar, then the number of edges is at least 3n 6.
- 8. One way is to think about what is the shape of each face and use Euler's formula. Another way is to think about what the skeleton would look like.
- 9. You'll want to come up with actual coordinates for the vertices. To come up with good coordinates for the tetrahedron, find a tetrahedron within the regular cube with vertices $(\pm 1, \pm 1, \pm 1)$.
- 10. Relate the number of edges to the number of vertices.