Worksheet 1.5 - Math 455

1. Find a planar representation of $K_{2,3}$.

2. Draw a planar graph in which every vertex has degree exactly 5 .

See http://mathworld.wolfram.com/IcosahedralGraph.html
3. Let G_{1} and G_{2} be two planar graphs with n vertices, q edges, and r regions. Must they be isomorphic?

No. Take for example two trees on n vertices that are not isomorphic. They both have n vertices, $n-1$ edges and 1 region.

4. How many regions are in a connected planar graph G of order 24 and regular degree 3 ?

Such a graph has $\frac{24 \cdot 3}{2}=36$ edges. Since G is planar, we know by Euler's formula that the number of regions is $2-24+36=14$.
5. Let G be a connected planar graph of order n where $n<12$. Prove that $\delta(G) \leq 4$.

If $n \leq 5$, then it is trivial since each vertex has at most 4 neighbors.

Suppose $\delta(G) \geq 5$ and that $6 \leq n \leq 11$. Then we obtain that $5 n \leq \sum_{v \in V(G)} \operatorname{deg}(v)$ since each degree is at least 5. Furthermore, $\sum_{v \in V(G)} \operatorname{deg}(v)=2 \cdot|E(G)| \leq 2(3 n-6)=6 n-12$ since G is planar. So $5 n \leq 6 n-12$. Finally, note that $-12<n$ since $n \leq 11$, so $5 n \leq 6 n-12<5 n$, a contradiction. So if $6 \leq n \leq 11$, then $\delta(G) \leq 4$ for connected planar graphs.
6. Prove that Euler's formula fails for disconnected graph.

Take for example the following forest.

Here, $n=8, q=6$ and $r=1$, but $8-6+1 \neq 2$.
7. Let G be of order $n \geq 11$. Show that at least one of G and \bar{G} is nonplanar.

First note that $|E(G)|+|E(\bar{G})|=\frac{n(n-1)}{2}$. If G and \bar{G} were both nonplanar, then $E(G) \leq 3 n-6$ and $E(\bar{G}) \leq 3 n-6$. Therefore, $\frac{n(n-1)}{2} \leq 6 n-12$ which is equivalent to saying $0 \leq-\frac{1}{2} n^{2}+\frac{13}{2} n-12$. Plotting this quadratic function, we see it lies above the y-axis when $n \in\{3,4, \ldots, 10\}$. So if $n \geq 11$, both graphs cannot be planar.
8. Show that there is no polyhedron with 5 vertices such that each pair of vertices is connected by an edge.

The skeleton of such a graph would be K_{5}, which we know is nonplanar. But the skeleton of any polyhedron is a planar graph. Thus there cannot be such a polyhedron.
9. For a regular tetrahedron, take the midpoint of each of the 6 edges. Show that the solid whose vertices are those points is a regular octahedron.
Consider the regular cube with the vertices $(\pm 1, \pm 1, \pm 1)$. Take every other vertex, that is, $(1,1,1)$, $(-1,-1,1),(-1,1,-1)$ and $(1,-1,-1)$. Notice that the distance between each of these points is $\sqrt{8}$, and so they are the vertices of a regular tetrahedron. Now the midpoints of each edge are the six points $(\pm 1,0,0),(0, \pm 1,0)$, and $(0,0, \pm 1)$, which are the vertices of a regular octahedron with sidelength $\sqrt{2}$.
10. Let F_{k} be the number of faces of a polyhedron P that are k-gons. For a simple polyhedron, i.e., a polyhedron where every vertex has degree 3 , show that $3 F_{3}+2 F_{4}+F_{5}-F_{7}-2 F_{8}-3 F_{9}-\ldots \geq 12$.

Sorry, I meant to put an easier question! The idea would be to first show that $\sum_{n \geq 3}(6-n)=4 E-6 V+12$ and then use the fact that $2 E \geq 3 V$, and then to look at the dual polytope.

