Worksheet 1.5 - Math 455

1. Find a planar representation of $K_{2,3}$.

2. Draw a planar graph in which every vertex has degree exactly 5.

See http://mathworld.wolfram.com/IcosahedralGraph.html

3. Let G_1 and G_2 be two planar graphs with n vertices, q edges, and r regions. Must they be isomorphic?

No. Take for example two trees on n vertices that are not isomorphic. They both have n vertices, n-1 edges and 1 region.

4. How many regions are in a connected planar graph G of order 24 and regular degree 3?

Such a graph has $\frac{24\cdot3}{2} = 36$ edges. Since G is planar, we know by Euler's formula that the number of regions is 2 - 24 + 36 = 14.

5. Let G be a connected planar graph of order n where n < 12. Prove that $\delta(G) \leq 4$.

If $n \leq 5$, then it is trivial since each vertex has at most 4 neighbors.

Suppose $\delta(G) \geq 5$ and that $6 \leq n \leq 11$. Then we obtain that $5n \leq \sum_{v \in V(G)} \deg(v)$ since each degree is at least 5. Furthermore, $\sum_{v \in V(G)} \deg(v) = 2 \cdot |E(G)| \leq 2(3n-6) = 6n-12$ since G is planar. So $5n \leq 6n-12$. Finally, note that -12 < n since $n \leq 11$, so $5n \leq 6n-12 < 5n$, a contradiction. So if $6 \leq n \leq 11$, then $\delta(G) \leq 4$ for connected planar graphs.

6. Prove that Euler's formula fails for disconnected graph.

Take for example the following forest.

Here, n = 8, q = 6 and r = 1, but $8 - 6 + 1 \neq 2$.

7. Let G be of order $n \ge 11$. Show that at least one of G and \overline{G} is nonplanar.

First note that $|E(G)| + |E(\bar{G})| = \frac{n(n-1)}{2}$. If G and \bar{G} were both nonplanar, then $E(G) \leq 3n - 6$ and $E(\bar{G}) \leq 3n - 6$. Therefore, $\frac{n(n-1)}{2} \leq 6n - 12$ which is equivalent to saying $0 \leq -\frac{1}{2}n^2 + \frac{13}{2}n - 12$. Plotting this quadratic function, we see it lies above the *y*-axis when $n \in \{3, 4, \ldots, 10\}$. So if $n \geq 11$, both graphs cannot be planar.

8. Show that there is no polyhedron with 5 vertices such that each pair of vertices is connected by an edge.

The skeleton of such a graph would be K_5 , which we know is nonplanar. But the skeleton of any polyhedron is a planar graph. Thus there cannot be such a polyhedron.

9. For a regular tetrahedron, take the midpoint of each of the 6 edges. Show that the solid whose vertices are those points is a regular octahedron.

Consider the regular cube with the vertices $(\pm 1, \pm 1, \pm 1)$. Take every other vertex, that is, (1, 1, 1), (-1, -1, 1), (-1, 1, -1) and (1, -1, -1). Notice that the distance between each of these points is $\sqrt{8}$, and so they are the vertices of a regular tetrahedron. Now the midpoints of each edge are the six points $(\pm 1, 0, 0), (0, \pm 1, 0)$, and $(0, 0, \pm 1)$, which are the vertices of a regular octahedron with sidelength $\sqrt{2}$.

10. Let F_k be the number of faces of a polyhedron P that are k-gons. For a simple polyhedron, i.e., a polyhedron where every vertex has degree 3, show that $3F_3 + 2F_4 + F_5 - F_7 - 2F_8 - 3F_9 - \ldots \ge 12$.

Sorry, I meant to put an easier question! The idea would be to first show that $\sum_{n\geq 3}(6-n) = 4E-6V+12$ and then use the fact that $2E \geq 3V$, and then to look at the dual polytope.