
Worksheet 1.1 - Math 455

1. Let G = (V,E). Show that |E| = 1
2

∑
v∈V deg(v).

Adding up the degrees of all the vertices, you end up counting each edge twice, once for each of its
endpoints. Thus

∑
v∈V deg(v) = 2|E|.

2. Show that the number of vertices with odd degree in any graph is even.

By the previous question, we know that summing up the degrees should give us an even number. This
means that the number of vertices with odd degrees need to be even so that the sum can be even.

3. Let G = (V,E) where |V | ≥ 2. Show that the degree sequence has at least one pair of repeated entries.

Suppose there exists a connected component that contains k vertices where k ≥ 2. The degree of every
vertex in that component is between 1 and k− 1. Since there are k vertices, two of them must have the
same degree.

If there doesn’t exist a connected component containing at least two vertices, then my graph is made of
isolated vertices, and so every degree is the same: zero.

4. Show that any walk between any two given vertices in a graph contains a path between those two vertices.

We proceed by induction on the length of the walk. If there is a walk of length one between vertices u
and v, then {u, v} ∈ E(G) and that edge is also a path between u and v.

Let’s now assume that any walk of length less or equal to k − 1 between vertices u and v also contains
a path between u and v, and let’s prove that the same holds for a walk of length k.

If the walk of length k between vertices u and v contains no repeated vertices, then it is a path, and we
are done.

Otherwise, some vertex gets visited multiple times. Let w be the first vertex that you visit in your
u, v-walk that you eventually visit again. Certainly, stopping your walk at the first time you visit w
gives you a u,w-path. Removing these vertices from your walk leaves you with a w, v-walk of length less
than k. By the induction hypothesis, this w, v-walk contains a w, v-path. Gluing this w, v-path after the
u,w-path you found gives you a u, v-path. Indeed, besides w, there cannot be any common vertices in
those two paths since w was the first vertex that ever got visited again in the walk.

5. Show that every finite graph having exactly two vertices of odd degree must contain a path from one to
the other.

To count the number of edges in a connected component, one can add up the degrees of the vertices
in the component and divide by two (for the same reason as in problem 1). Just as in problem 2, this
implies that the number of odd degree vertices in a connected component must be even. Thus, if there
are exactly two odd degree vertices in a graph, they must be in the same connected component. By
the definition of a connected component, there is a path between any two vertices in the component,
including between these two odd degree vertices.

6. Show that every closed odd walk contains an odd cycle.

We proceed again by induction on the length of the closed odd walk.

It is true if the length is 1: then we have a loop which is also a cycle of length 1 (assuming we’re allowing
non-simple graphs—otherwise, you’ll want to consider the case where the length is 3 and show that in
that case, you can’t visit the same vertex twice except to close the walk and thus have an odd cycle).
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Suppose it is true for all closed odd walks of length less or equal to 2k − 1, that is, all closed odd walks
of length less or equal to 2k − 1 contain an odd cycle. We want to show this still holds for closed odd
walks of length 2k + 1.

If the closed odd walk of length 2k+ 1 contains no repeated vertices except for the first and last vertex,
then it is a cycle of odd length, and we are done.

Otherwise, some other vertex must get repeated multiple times. Consider the vertex that is the first
to be encountered a second time along your walk, say w. Between the moment when you first meet w
and when you meet it a second time, no other vertex gets repeated, so the walk between your first and
second encounter with w is a cycle. Either that cycle has odd length, and we are done, or that cycle
has even length. In that case, remove that cycle from your walk—you are left with a closed walk, and
it’s length is odd since you have removed an even number of edges, and its length is also at most 2k− 1
since any even cycle has length at least 2. Thus, by the induction hypothesis, I know that this closed
odd walk contains an odd cycle.

7. Let G = (V,E) such that |V | = n and |E| < n− 1. Show that G is not connected.

First draw your n vertices. Note that at this point, your graph has n connected components. Then
start adding your edges one by one. Either both endpoints of the edge you’re adding are in the same
connected component, and then the number of connected components remains the same. Or they are in
different connected components, and adding that edge turns these two connected components into a new
bigger connected component, thus decreasing the total number of connected components by one. Since
you are adding at most n− 2 edges, the total number of connected components will decrease by at most
n− 2 as you add all of the edges, meaning that in the end, the total number of connected components
will be at least 2. Thus G is not connected.

8. Show that every 2-connected graph contains at least one cycle.

If the graph is Kn, the result is clear. Otherwise, pick two vertices u and v that are not adjacent. Since
the graph is connected, you know there exists a path, say P1, between any two vertices in the graph,
including between u and v. Since u and v are not adjacent, this path has length at least two and contains
at least one other vertex. Remove a vertex, say w, on this u, v-path from the graph. Since the graph
is 2-connected, you know that G− w is still connected, so there still exists some different path, say P2,
from u to v. Two cases arise.

• P2 contains a vertex that is not in P1. Let x be the first vertex along P2 that is not in P1. Let
x′ be the vertex preceding x on path P2; note that x′ is in P1 as well. Let y be the first vertex that
is after x on path P2 that is also on P1 (at the latest, this will be vertex v). Following P2 from x′

to y and then P1 from y back to x′ forms a cycle.

• Every vertex in P2 is in P1. Still, given that w is not in P2, this means that we have some edge,
say xy, that is in P2 that isn’t in P1. Following P1 from x to y and then following the edge xy back
gives us a cycle since x and y are not adjacent in P1.

9. Show that for every graph G, κ(G) ≤ δ(G).

Let v be a vertex with degree δ(v). Note that in G − N(v), v is an isolated vertex, so G − N(v) is
disconnected, meaning that N(v) is a cutset. This implies that κ(G) ≤ |N(v)| = δ(G).

10. True or false? If G has no bridges, then G has exactly one cycle. Explain.

False. Kn where n ≥ 4 has no bridges, and more than one cycle.

11. True or false? If G has no cut vertices, then G has no bridges. Explain.

False. K2 has no cut vertex, but it has a bridge. This is an exception though: if a connected graph on
three vertices or more contains a bridge, then it contains a cut vertex. Indeed, suppose G − uv gives
two connected components, say Gu (which contains vertex u) and Gv (which contains vertex v). If
|V (Gu)| ≥ 2, then Gu − u is not empty. Therefore, u is a cut vertex since Gu − u is not empty and is
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in a different component as v since uv was a bridge for G. Similarly, if Gv − v is not empty, then v is a
cut vertex. The only way both Gu − u and Gv − v can be empty is if Gu and Gv consist exactly of one
vertex each. If G is connected, the only way this can be is if G is K2.

12. True or false? If G has no bridges, then G has no cut vertices. Explain.

False. Take for example

which contains a cut vertex but no bridge.

13. If Kr1,r2 is regular, prove that r1 = r2.

I meant for this question to be a bit more challenging than that. I’ll show the stronger statement that
“If G is a regular bipartite graph with parts of size r1 and r2, then r1 = r2.

Suppose the degree at every vertex is d. Then I can count the total number of edges by adding the
degrees of the vertices in one part (that way, every edge is counted exactly one). This implies that the
number of edges is r1 · d if I add up the degrees of the vertices in the first part. If I do the same thing
using the second part, I get that the number of edges is r2 · d. Thus r1 · d = r2 · d which implies that
r1 = r2.

14. The complete multipartite graph Kr1,r2,...,rk is the graph that consists of k sets of vertices A1, A2, . . . , Ak

(called parts), with |Ai| = ri for each I, where every pair of vertices from two different parts form an
edge, and every pair of vertices coming from the same part do not form an edge. Find an expression for
the order and size of Kr1,r2,...,rk .

The order is the total number of vertices, so
∑k

i=1 ri.

The size is the total number of edges. Between parts Ai and Aj , there are ri · rj edges. I need to do this
for every pair of parts. There are different ways in which one can write this; here is one.∑

1≤i<j≤k

ri · rj

15. Prove that if the graphs G and H are isomorphic, then their complements Ḡ and H̄ are also isomorphic.

If G and H are isomorphic, then there exists a one-to-one correspondence f : V (G)→ V (H) such that for
each pair of vertices x, y of G, xy ∈ E(G) if and only if f(x)f(y) ∈ E(H). This implies that xy 6∈ E(G)
(i.e., xy ∈ E(Ḡ)) if and only if f(x)f(y) 6∈ E(H) (i.e., f(x)f(y) ∈ E(H̄)) for any pair of vertices x, y
of G. Note that V (G) = V (Ḡ) and V (H) = V (H̄). So f is a one-to-one correspondence between V (Ḡ)
and V (H̄) such that for every pair of vertices in Ḡ, xy ∈ E(Ḡ) if and only if f(x)f(y) ∈ E(H̄). Thus,
Ḡ and H̄ are isomorphic.
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