Homework 4 - Math 409

In preparation of Quiz 4 on April 25

- 1. Show that the dual of the dual is the primal.
- 2. Show that, if the primal is feasible but the dual is infeasible, then the primal will be unbounded.
- 3. (a) List all the faces of the tetrahedron $P = \{x \in \mathbb{R}^3 | x_i \ge 0 \ \forall i \in [3], x_1 + x_2 + x_3 \le 1\}.$
 - (b) Let $Q = \{x \in \mathbb{R}^n | x_i \ge 0 \ \forall i \in [n], \sum_{i=1}^n x_i \le 1\}$. How many faces does Q have? How many faces of dimension k does Q have?
- 4. Show that $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ has no vertices if rank(A) < n.
- 5. Let G be any graph. Let P be the convex hull of all perfect matchings in G. Show that the vertices corresponding to matchings M_1 and M_2 are adjacent on P if and only if $M_1\Delta M_2$ has exactly one connected component. To do so, proceed in two steps.

First, show that if $M_1\Delta M_2$ has more than one connected components, then you can build two new matchings M_3 and M_4 that contain together the same edges (with the same multiplicity) as M_1 and M_2 together. What does this imply about faces containing M_1 and M_2 ?

Then, assume that $M_1 \Delta M_2$ has exactly one connected component. Note that two vertices are adjacent on P if and only if there exists an objective function c such that these two vertices are the only ones minimizing $c^{\top}x$ over P. Find such a function c for the vertices corresponding to M_1 and M_2 to show that they form an edge.