Annie's Survival Kit 8 - Math 324

1. (10 points) Let S be the part of the surface $x^{2}+y^{2}+(z-1)^{2}=4$ (oriented with $\hat{\mathbf{n}}$ pointing outwards) lying above the plane $z=1$. Let $\mathbf{F}=\left\langle 4 x^{3}+x-\sin (y z),-12 x^{2} y+e^{z^{3}}, x^{2}+y^{2}\right\rangle$. Find the flux through S using the divergence theorem. Recall that the divergence theorem states that $\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} d S=\iiint_{R} \operatorname{div}(\mathbf{F}) d V$ when \mathbf{F} is defined and differentiable everywhere on S and R where S is a closed surface and R is the region that it contains. Note here that S is not closed.
2. (10 points) Find the volume of the (open at both ends) half-donut parametrized by

$$
\mathbf{r}(u, v)=\langle(3+\cos (v)) \cos (u),(3+\cos (v)) \sin (u), \sin (v)\rangle
$$

for $u \in[0, \pi]$ and $v \in[0,2 \pi]$. (Hint: use the divergence theorem and an appropriate vector field.)
3. (10 points) Let S be a sphere of radius a centered at the origin. Calculate $\iint_{S} x^{2}-z d S$ by applying the divergence theorem.

