Annie's Survival Kit 7 - Math 324

- 1. (10 points) (a) (4 points) Let $\mathbf{F} = \langle x, y, z \rangle$ and let S be the part of the surface $z = \sqrt{x^2 + y^2}$ lying underneath the plane z = 1, where $\hat{\mathbf{n}}$ is pointing generally upwards/inwards. Draw S and a few vectors for $\hat{\mathbf{n}}$ and \mathbf{F} .
 - (b) (6 points) Find $\int \int_{S} \mathbf{F} \cdot \hat{\mathbf{n}} \, dS$ either by parametrizing S or in any other way. Make sure every part of your answer is clear.
- 2. (10 points) (a) (8 points) Find the moment of inertia around the z-axis for the surface $x^2 + y^2 = 4$ with $0 \le z \le 1$ and with density equal to the square of the distance to the z-axis.
 - (b) (2 points) Without doing further calculations, determine whether or not the moment of inertia around the z-axis for the surface $x^2 + y^2 = 4$ with $1 \le z \le 2$ is the same as in part (a). Explain your answer.
- 3. (10 points) Find the flux through the surface $x^2 + y^2 + (z 1)^2 = 1$ oriented outwards/upwards for $\mathbf{F} = \langle -x, -y, -z \rangle$.