Annie's Survival Kit 7-Math 324

1. (10 points) (a) (4 points) Let $\mathbf{F}=\langle x, y, z\rangle$ and let S be the part of the surface $z=\sqrt{x^{2}+y^{2}}$ lying underneath the plane $z=1$, where $\hat{\mathbf{n}}$ is pointing generally upwards/inwards. Draw S and a few vectors for $\hat{\mathbf{n}}$ and \mathbf{F}.
(b) (6 points) Find $\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} d S$ either by parametrizing S or in any other way. Make sure every part of your answer is clear.
2. (10 points) (a) (8 points) Find the moment of inertia around the z-axis for the surface $x^{2}+y^{2}=4$ with $0 \leq z \leq 1$ and with density equal to the square of the distance to the z-axis.
(b) (2 points) Without doing further calculations, determine whether or not the moment of inertia around the z-axis for the surface $x^{2}+y^{2}=4$ with $1 \leq z \leq 2$ is the same as in part (a). Explain your answer.
3. (10 points) Find the flux through the surface $x^{2}+y^{2}+(z-1)^{2}=1$ oriented outwards/upwards for $\mathbf{F}=\langle-x,-y,-z\rangle$.
