Annie's Survival Kit 5 - Math 324

- 1. (10 points) (a) (8 points) Let $\mathbf{F} = \langle 3x^2y, x^3 + 3y^2 \rangle$ and let *C* be the path going along $x = y^2$ from (4, 2) to (0, 0). Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ either by doing so directly, by using path-independence to replace *C* by some other path or by using the fundamental theorem for line integrals, i.e. $\int_C \mathbf{F} \cdot d\mathbf{r} = f(P_1) f(P_0)$ where $\nabla f = \mathbf{F}$ and P_0 and P_1 are the endpoints of *C*.
 - (b) (2 points) Do it in another way.
- 2. (10 points) Find the mass of a wire in the shape of the semi-circle $x^2 + y^2 = 1$ where $y \ge 0$, and whose density is the distance from y = 1.
- 3. (10 points) Evaluate $\int_C x \sqrt{y} dy$ when C is the path going along $x = \frac{\cos^2(t)}{\sin(t)}$ and $y = \sin^2(t)$ for $t \in [\frac{\pi}{4}, \frac{\pi}{2}]$.