Annie's Survival Kit 5-Math 324

1. (10 points) (a) (8 points) Let $\mathbf{F}=\left\langle 3 x^{2} y, x^{3}+3 y^{2}\right\rangle$ and let C be the path going along $x=y^{2}$ from $(4,2)$ to $(0,0)$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ either by doing so directly, by using path-independence to replace C by some other path or by using the fundamental theorem for line integrals, i.e. $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f\left(P_{1}\right)-f\left(P_{0}\right)$ where $\nabla f=\mathbf{F}$ and P_{0} and P_{1} are the endpoints of C.
(b) (2 points) Do it in another way.
2. (10 points) Find the mass of a wire in the shape of the semi-circle $x^{2}+y^{2}=1$ where $y \geq 0$, and whose density is the distance from $y=1$.
3. (10 points) Evaluate $\int_{C} x \sqrt{y} d y$ when C is the path going along $x=\frac{\cos ^{2}(t)}{\sin (t)}$ and $y=\sin ^{2}(t)$ for $t \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.
