
Annie’s Survival Kit 2 - Math 324

1. (10 points) (a) (7 points) Switch the order of integration of

∫ 2

−2

∫ √4−y2

−
√

4−y2

∫ 1

−
√

4−x2−y2+1

1 dz dx dy to

dr dθ dz.

Answer: Since zmin(x, y) = −
√

4− x2 − y2 + 1 and zmax = 1, the region is bounded below by
the sphere x2 + y2 + (z − 1)2 = 4 (i.e. a sphere of radius two centered at (0, 0, 1)) and above by
z = 1. Thus, the region is some part of the bottom hemisphere of the ball of radius two centered
at (0, 0, 1). To know which part, we must look at the projection of the region onto the xy-plane.

Since xmin(y) = −
√

4− y2, xmax(y) =
√

4− y2, ymin = −2 and ymax = 2, the projection is the disk
of radius two centered at the origin. Therefore, the region is the whole bottom hemisphere of the ball.
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Switching to dr dθ dz, we hit our region with planes z = z0 for −1 ≤ z0 ≤ 1. The intersection of
z = z0 and our half-ball is a full disk of radius

√
4− (z0 − 1)2 (since x2 + y2 + (z−1)2 = 4 becomes

r2 + (z − 1)2 = 4 in polar coordinates). Finally, dz dx dy becomes r dr dθ dz. Therefore, we obtain

∫ 1

−1

∫ 2π

0

∫ √4−(z−1)2

0

r dr dθ dz.

(b) (3 points) Knowing that
∫ ∫ ∫

R
1 dV calculates the volume of a region R, solve the previous triple

integral without doing any calculations.

Answer: Since
∫ ∫ ∫

R
1 dV calculates the volume of R, the previous triple integral calculates the

volume of a half-ball of radius two: 1
2 ·

4π23

3 = 16π
3 .



2. (10 points) Switch the order of integration of

∫ π

0

∫ 1

0

∫ 1

−1
zr3 dz dr dθ to dy dx dz.

Answer: Since zmin(r, θ) = −1 and zmax(r, θ) = 1, the region is bounded below by the plane z = −1
and above by the plane z = 1. Since the projection onto the rθ-plane (or, if you prefer, the xy-plane)
is a half-disk of radius one that sits in y ≥ 0, the region is a solid half-cylinder of height two (between
−1 ≤ z ≤ 1) sitting in y ≥ 0.
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Switching to dy dx dz, fixing some x and z, I get a line that enters the region through the plane y = 0 and
comes out on the cylinder where y =

√
1− x2 (since the cylinder has equation x2 + y2 = 1). Projecting

my half-cylinder onto the xz-plane, I get the square bounded by −1 ≤ x ≤ 1 and −1 ≤ z ≤ 1. Finally,
since dy dx dz = r dz dr dθ, we obtain

∫ 1

−1

∫ 1

−1

∫ √1−x2

0

z(x2 + y2) dy dx dz.
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3. (10 points) Consider a solid cone of height
√

3 with a 120◦ vertex angle. Its density at point P is equal
to the distance from P to the central axis of the cone. Set up the integrals for the mass of the cone using
cylindrical coordinates in two different orders: dz dr dθ and dr dθ dz. Do not evaluate those integrals.

Hints:

• Choose and place the coordinate system to get the easiest integral possible.

• The mass of a solid region R with density δ is
∫ ∫ ∫

R
δ dV .

• If the cone has a 2π
3 vertex angle (the angle between its sides), what is the slope of its sides? How

does the slope fit into the equation for a cone?

Answer: The easiest way to place the coordinate system is to put the vertex at the origin and center
the cone opening up around the z-axis. Then the slope of the sides of the cone is 1

tan(π3 )
= 1√

3
. So the

equation of the cone is z = r√
3
.
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The density is equal to the distance from the z-axis, so δ = r.

Setting the triple integral with the order dz dr dθ, we fix r and θ to obtain a vertical line parallel to
the z-axis. If this line intersects the region, it first enters through the cone (where z = r√

3
and come

out through the top of the cone (where z =
√

3). The projection of the region onto the rθ-plane (or
xy-plane), is a disk of radius 3, so the mass can be found by evaluating

∫ 2π

0

∫ 3

0

∫ √3

r√
3

r2 dz dr dθ.

Setting the triple integral with the order dr dθ dz, we cut the region with planes z = z0 for 0 ≤ z0 ≤
√

3.
The intersection of z = z0 with our region is a disk of radius

√
3z0. Therefore, the mass can also be

found by evaluating

∫ √3

0

∫ 2π

0

∫ √3z

0

r2 dz dr dθ.
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4. (10 points) Set up a triple integral to find the volume of the region bounded by z ≤ x2 + y2, x2 + y2 ≤ 3
and z ≥ 0 using spherical coordinates. (Recall that volume is

∫ ∫ ∫
R

1 dV .) Do not evaluate.

Answer: The region is within the cylinder x2+y2 = 3: below the paraboloid z = x2+y2 and above the
plane z = 0. Therefore, fixing φ and θ, a half-line starting at the origin hits the paraboloid first (where

ρ = cos(φ)
sin2(φ)

since z = x2 + y2 is ρ cos(φ) = ρ2 sin2(φ) in spherical coordinates) and then the cylinder

(where ρ =
√
3

sin(φ) since x2 +y2 = 3 is ρ2 sin2(φ) = 3). The paraboloid and the cylinder intersect at z = 3

in a circle of radius
√

3. Thus, φmin = tan−1(
√
3
3 ) = π

6 , and since we are considering the region over
z = 0, φmax = π

2 . Finally, θ is from 0 to 2π since we have a full revolution around the z-axis. Therefore,
the volume is

∫ 2π

0

∫ π
2

π
6

∫ √
3

sin(φ)

cos(φ)

sin2(φ)

1ρ2 sin(φ) dρdφdθ.

5. (10 points) Switch

∫ 2π

0

∫ √3

0

∫ 3

2

zr4 dz dr dθ+

∫ 2π

0

∫ 2

√
3

∫ √4−r2+2

2

zr4 dz dr dθ to spherical coordinates.

Answer: The region in the first triple integral is part of a solid cylinder of radius
√

3 centered around
the z-axis of height 1 (with 2 ≤ z ≤ 3). The region in the second triple integral is the part of the ball of
radius two centered at (0, 0, 2) (since z =

√
4− r2+2) between 2 ≤ z ≤ 3 and outside the aforementioned

cylinder. Therefore, together, the region is the ball of radius two centered at (0, 0, 2) cut with the planes
z = 2 and z = 3.

With spherical coordinates, fixing φ and θ, the half-line always enters through the plane z = 2 (where
ρ = 2

cos(φ) ), but either comes out on the sphere (where ρ = 4 cos(φ) since x2 + y2 + (z − 2)2 = 4 which

is equivalent to x2 + y2 + z2 − 4z + 4 = 4 and thus ρ2 − 4ρ cos(φ) = 0) or on the plane z = 3 (where
ρ = 3

cos(φ) . We will thus need two triple integrals here too.

When φ = 0, we come out on z = 3 and continue to do so until angle π
6 . Then from π

6 to π
4 , we come

out on the sphere. Moreover, 0 ≤ θ ≤ 2π since we have a full revolution around the z-axis.

Finally, note that zr4 dz dr dθ = zr3 dV = ρ cos(φ)ρ3 sin3(φ)ρ2 sin(φ) dρ dφ dθ. Thus, we obtain

∫ 2π

0

∫ π
6

0

∫ 3
cos(φ)

2
cos(φ)

ρ6 sin4(φ) dρ dφ dθ +

∫ 2π

0

∫ π
4

π
6

∫ 4 cos(φ)

2
cos(φ)

ρ6 sin4(φ) dρ dφ dθ.

6. (10 points) Find the area of the ellipse (2x+ 5y − 7)2 + (3x− 7y + 1)2 ≤ 1.

Answer: Let u = 2x+ 5y − 7 and v = 3x− 7y + 1.

The Jacobian is

(
ux uy
vx vy

)
=

(
2 5
3 −7

)
= −14 − 15 = −29. Thus dudv = | − 29|dxdy, so

∫ ∫
R

1 dA

becomes ∫ ∫
u2+v2≤1

1

29
du dv =

1

29
π12 =

π

29
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