Annie's Survival Kit 2 - Math 324

1. (10 points) (a) (7 points) Switch the order of integration of $\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}+1}^{1} 1 d z d x d y$ to $d r d \theta d z$.

Answer: Since $z_{\min }(x, y)=-\sqrt{4-x^{2}-y^{2}}+1$ and $z_{\max }=1$, the region is bounded below by the sphere $x^{2}+y^{2}+(z-1)^{2}=4$ (i.e. a sphere of radius two centered at $\left.(0,0,1)\right)$ and above by $z=1$. Thus, the region is some part of the bottom hemisphere of the ball of radius two centered at $(0,0,1)$. To know which part, we must look at the projection of the region onto the $x y$-plane. Since $x_{\min }(y)=-\sqrt{4-y^{2}}, x_{\max }(y)=\sqrt{4-y^{2}}, y_{\text {min }}=-2$ and $y_{\max }=2$, the projection is the disk of radius two centered at the origin. Therefore, the region is the whole bottom hemisphere of the ball.

Switching to $d r d \theta d z$, we hit our region with planes $z=z_{0}$ for $-1 \leq z_{0} \leq 1$. The intersection of $z=z_{0}$ and our half-ball is a full disk of radius $\sqrt{4-\left(z_{0}-1\right)^{2}}\left(\right.$ since $x^{2}+y^{2}+(z-1)^{2}=4$ becomes $r^{2}+(z-1)^{2}=4$ in polar coordinates). Finally, $d z d x d y$ becomes $r d r d \theta d z$. Therefore, we obtain

$$
\int_{-1}^{1} \int_{0}^{2 \pi} \int_{0}^{\sqrt{4-(z-1)^{2}}} r d r d \theta d z
$$

(b) (3 points) Knowing that $\iiint_{R} 1 d V$ calculates the volume of a region R, solve the previous triple integral without doing any calculations.

Answer: Since $\iiint_{R} 1 d V$ calculates the volume of R, the previous triple integral calculates the volume of a half-ball of radius two: $\frac{1}{2} \cdot \frac{4 \pi 2^{3}}{3}=\frac{16 \pi}{3}$.
2. (10 points) Switch the order of integration of $\int_{0}^{\pi} \int_{0}^{1} \int_{-1}^{1} z r^{3} d z d r d \theta$ to $d y d x d z$.

Answer: Since $z_{\min }(r, \theta)=-1$ and $z_{\max }(r, \theta)=1$, the region is bounded below by the plane $z=-1$ and above by the plane $z=1$. Since the projection onto the $r \theta$-plane (or, if you prefer, the $x y$-plane) is a half-disk of radius one that sits in $y \geq 0$, the region is a solid half-cylinder of height two (between $-1 \leq z \leq 1$) sitting in $y \geq 0$.

Switching to $d y d x d z$, fixing some x and z, I get a line that enters the region through the plane $y=0$ and comes out on the cylinder where $y=\sqrt{1-x^{2}}$ (since the cylinder has equation $x^{2}+y^{2}=1$). Projecting my half-cylinder onto the $x z$-plane, I get the square bounded by $-1 \leq x \leq 1$ and $-1 \leq z \leq 1$. Finally, since $d y d x d z=r d z d r d \theta$, we obtain

$$
\int_{-1}^{1} \int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} z\left(x^{2}+y^{2}\right) d y d x d z
$$

3. (10 points) Consider a solid cone of height $\sqrt{3}$ with a 120° vertex angle. Its density at point P is equal to the distance from P to the central axis of the cone. Set up the integrals for the mass of the cone using cylindrical coordinates in two different orders: $d z d r d \theta$ and $d r d \theta d z$. Do not evaluate those integrals.

Hints:

- Choose and place the coordinate system to get the easiest integral possible.
- The mass of a solid region R with density δ is $\iiint_{R} \delta d V$.
- If the cone has a $\frac{2 \pi}{3}$ vertex angle (the angle between its sides), what is the slope of its sides? How does the slope fit into the equation for a cone?

Answer: The easiest way to place the coordinate system is to put the vertex at the origin and center the cone opening up around the z-axis. Then the slope of the sides of the cone is $\frac{1}{\tan \left(\frac{\pi}{3}\right)}=\frac{1}{\sqrt{3}}$. So the equation of the cone is $z=\frac{r}{\sqrt{3}}$.

The density is equal to the distance from the z-axis, so $\delta=r$.

Setting the triple integral with the order $d z d r d \theta$, we fix r and θ to obtain a vertical line parallel to the z-axis. If this line intersects the region, it first enters through the cone (where $z=\frac{r}{\sqrt{3}}$ and come out through the top of the cone (where $z=\sqrt{3}$). The projection of the region onto the $r \theta$-plane (or $x y$-plane), is a disk of radius 3 , so the mass can be found by evaluating

$$
\int_{0}^{2 \pi} \int_{0}^{3} \int_{\frac{r}{\sqrt{3}}}^{\sqrt{3}} r^{2} d z d r d \theta
$$

Setting the triple integral with the order $d r d \theta d z$, we cut the region with planes $z=z_{0}$ for $0 \leq z_{0} \leq \sqrt{3}$. The intersection of $z=z_{0}$ with our region is a disk of radius $\sqrt{3} z_{0}$. Therefore, the mass can also be found by evaluating

$$
\int_{0}^{\sqrt{3}} \int_{0}^{2 \pi} \int_{0}^{\sqrt{3} z} r^{2} d z d r d \theta
$$

4. (10 points) Set up a triple integral to find the volume of the region bounded by $z \leq x^{2}+y^{2}, x^{2}+y^{2} \leq 3$ and $z \geq 0$ using spherical coordinates. (Recall that volume is $\iiint_{R} 1 d V$.) Do not evaluate.
Answer: The region is within the cylinder $x^{2}+y^{2}=3$: below the paraboloid $z=x^{2}+y^{2}$ and above the plane $z=0$. Therefore, fixing ϕ and θ, a half-line starting at the origin hits the paraboloid first (where $\rho=\frac{\cos (\phi)}{\sin ^{2}(\phi)}$ since $z=x^{2}+y^{2}$ is $\rho \cos (\phi)=\rho^{2} \sin ^{2}(\phi)$ in spherical coordinates) and then the cylinder (where $\rho=\frac{\sqrt{3}}{\sin (\phi)}$ since $x^{2}+y^{2}=3$ is $\rho^{2} \sin ^{2}(\phi)=3$). The paraboloid and the cylinder intersect at $z=3$ in a circle of radius $\sqrt{3}$. Thus, $\phi_{\min }=\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)=\frac{\pi}{6}$, and since we are considering the region over $z=0, \phi_{\max }=\frac{\pi}{2}$. Finally, θ is from 0 to 2π since we have a full revolution around the z-axis. Therefore, the volume is

$$
\int_{0}^{2 \pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \int_{\frac{\cos (\phi)}{\sin ^{2}(\phi)}}^{\frac{\sqrt{3}}{\sin (\phi)}} 1 \rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

5. (10 points) Switch $\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{2}^{3} z r^{4} d z d r d \theta+\int_{0}^{2 \pi} \int_{\sqrt{3}}^{2} \int_{2}^{\sqrt{4-r^{2}}+2} z r^{4} d z d r d \theta$ to spherical coordinates.

Answer: The region in the first triple integral is part of a solid cylinder of radius $\sqrt{3}$ centered around the z-axis of height 1 (with $2 \leq z \leq 3$). The region in the second triple integral is the part of the ball of radius two centered at $(0,0,2)$ (since $z=\sqrt{4-r^{2}}+2$) between $2 \leq z \leq 3$ and outside the aforementioned cylinder. Therefore, together, the region is the ball of radius two centered at $(0,0,2)$ cut with the planes $z=2$ and $z=3$.

With spherical coordinates, fixing ϕ and θ, the half-line always enters through the plane $z=2$ (where $\left.\rho=\frac{2}{\cos (\phi)}\right)$, but either comes out on the sphere (where $\rho=4 \cos (\phi)$ since $x^{2}+y^{2}+(z-2)^{2}=4$ which is equivalent to $x^{2}+y^{2}+z^{2}-4 z+4=4$ and thus $\rho^{2}-4 \rho \cos (\phi)=0$) or on the plane $z=3$ (where $\rho=\frac{3}{\cos (\phi)}$. We will thus need two triple integrals here too.
When $\phi=0$, we come out on $z=3$ and continue to do so until angle $\frac{\pi}{6}$. Then from $\frac{\pi}{6}$ to $\frac{\pi}{4}$, we come out on the sphere. Moreover, $0 \leq \theta \leq 2 \pi$ since we have a full revolution around the z-axis.
Finally, note that $z r^{4} d z d r d \theta=z r^{3} d V=\rho \cos (\phi) \rho^{3} \sin ^{3}(\phi) \rho^{2} \sin (\phi) d \rho d \phi d \theta$. Thus, we obtain

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{6}} \int_{\frac{2}{\cos (\phi)}}^{\frac{3}{\cos (\phi)}} \rho^{6} \sin ^{4}(\phi) d \rho d \phi d \theta+\int_{0}^{2 \pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \int_{\frac{2}{\cos (\phi)}}^{4 \cos (\phi)} \rho^{6} \sin ^{4}(\phi) d \rho d \phi d \theta
$$

6. (10 points) Find the area of the ellipse $(2 x+5 y-7)^{2}+(3 x-7 y+1)^{2} \leq 1$.

Answer: Let $u=2 x+5 y-7$ and $v=3 x-7 y+1$.
The Jacobian is $\left(\begin{array}{cc}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right)=\left(\begin{array}{cc}2 & 5 \\ 3 & -7\end{array}\right)=-14-15=-29$. Thus $d u d v=|-29| d x d y$, so $\iint_{R} 1 d A$ becomes

$$
\iint_{u^{2}+v^{2} \leq 1} \frac{1}{29} d u d v=\frac{1}{29} \pi 1^{2}=\frac{\pi}{29}
$$

