Annie's Survival Kit 3 - Math 324

Six questions for the price of three this week!

1. (10 points) (a) (7 points) Switch the order of integration of $\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}+1}^{1} 1 d z d x d y$ to $d r d \theta d z$.
(b) (3 points) Knowing that $\iiint_{R} 1 d V$ calculates the volume of a region R, solve the previous triple integral without doing any calculations.
2. (10 points) Switch the order of integration of $\int_{0}^{\pi} \int_{0}^{1} \int_{-1}^{1} z r^{3} d z d r d \theta$ to $d y d x d z$.
3. (10 points) Consider a solid cone of height $\sqrt{3}$ with a 120° vertex angle. Its density at point P is equal to the distance from P to the central axis of the cone. Set up the integrals for the mass of the cone using cylindrical coordinates in two different orders: $d z d r d \theta$ and $d r d \theta d z$. Do not evaluate those integrals.

Hints:

- Choose and place the coordinate system to get the easiest integral possible.
- The mass of a solid region R with density δ is $\iiint_{R} \delta d V$.
- If the cone has a $\frac{2 \pi}{3}$ vertex angle (the angle between its sides), what is the slope of its sides? How does the slope fit into the equation for a cone?

4. (10 points) Set up a triple integral to find the volume of the region bounded by $z \leq x^{2}+y^{2}, x^{2}+y^{2} \leq 3$ and $z \geq 0$ using spherical coordinates. (Recall that volume is $\iiint_{R} 1 d V$.) Do not evaluate.
5. (10 points) Switch $\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{2}^{3} z r^{4} d z d r d \theta+\int_{0}^{2 \pi} \int_{\sqrt{3}}^{2} \int_{2}^{\sqrt{4-r^{2}}+2} z r^{4} d z d r d \theta$ to spherical coordinates.
6. (10 points) Find the area of the ellipse $(2 x+5 y-7)^{2}+(3 x-7 y+1)^{2} \leq 1$.
