Annie's Survival Kit 1 - Math 324

1. (10 points) Evaluate $\int_{0}^{\frac{1}{4}} \int_{\sqrt{y}}^{\frac{1}{2}} \frac{e^{x}}{x} d x d y$ by changing the order of integration.

Hint 1: first figure out what is the integration region R.
Hint 2: recall that $\int u d v=u v-\int v d u$.
2. (10 points) (a) (5 points) Switch the order of integration of $\int_{-1}^{1} \int_{-\sqrt{2-x^{2}}}^{x} y \sqrt{x^{2}+y^{2}} d y d x$ to $d x d y$. Do not evaluate.
(b) (5 points) Switch $\int_{-1}^{1} \int_{-\sqrt{2-x^{2}}}^{x} y \sqrt{x^{2}+y^{2}} d y d x$ to polar coordinates. Do not evaluate.
3. (10 points) (a) (7 points) Find the center of mass of a flat object with density δ proportional to the distance to the x-axis, and with region R bounded by $y=x^{2}-1$ and $y=0$. (Recall that the center of mass (\bar{x}, \bar{y}) is such that $\bar{x}=\frac{\iint_{R} x \delta d A}{\iint_{R} \delta d A}$ and $\bar{y}=\frac{\iint_{R} y \delta d A}{\iint_{R} \delta d A}$.)
(b) (3 points) Without doing further calculations, find the center of mass of a flat object with density proportional to the distance to the line $y=3$, and with region R bounded by $y=x^{2}+2$ and $y=3$.

