Annie's Survival Kit 1 - Math 324

1. (10 points) Evaluate $\int_0^{\frac{1}{4}} \int_{\sqrt{y}}^{\frac{1}{2}} \frac{e^x}{x} dx dy$ by changing the order of integration.

Hint 1: first figure out what is the integration region R. Hint 2: recall that $\int u \, dv = uv - \int v \, du$.

- 2. (10 points) (a) (5 points) Switch the order of integration of $\int_{-1}^{1} \int_{-\sqrt{2-x^2}}^{x} y\sqrt{x^2+y^2} \, dy \, dx$ to $dx \, dy$. Do not evaluate.
 - (b) (5 points) Switch $\int_{-1}^{1} \int_{-\sqrt{2-x^2}}^{x} y \sqrt{x^2 + y^2} \, dy \, dx$ to polar coordinates. Do not evaluate.
- 3. (10 points) (a) (7 points) Find the center of mass of a flat object with density δ proportional to the distance to the x-axis, and with region R bounded by $y = x^2 1$ and y = 0. (Recall that the center of mass (\bar{x}, \bar{y}) is such that $\bar{x} = \frac{\int \int_R x \delta \, dA}{\int \int_R \delta \, dA}$ and $\bar{y} = \frac{\int \int_R y \delta \, dA}{\int \int_R \delta \, dA}$.)
 - (b) (3 points) Without doing further calculations, find the center of mass of a flat object with density proportional to the distance to the line y = 3, and with region R bounded by $y = x^2 + 2$ and y = 3.