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Abstract. ​Global depletion of resources and increased demand on our electric grid have resulted              
in a need for innovation in support of an intelligent utility network ㄧ the Smart Grid. Thus, the                  
enhancement of electrical power interactions for both utilities and customers has become a             
major focus for current research. At a microscale level, we use gradient boosting models to               
predict electrical power consumption and solar power generation for a single home. We also              
develop a dashboard as a visualization tool for this analysis. At a macroscale level, we explore                
the cost optimization of power dispatch between various energy sources in a simplified model of               
the German electric grid. Through these levels of study, we aim to establish a deeper               
understanding of the potential requirements of a modern Smart Grid. 
 
1. Introduction  

As technology advances, current societal trends have increased the need for efficient            
electrical production. This increased demand has developed a highly intricate problem in the             
field of data analytics. In light of this, scientists, mathematicians, and statisticians have designed,              
constructed, and improved a smart grid -- a multidimensional network that monitors, measures,             
and manages the transport of electricity. The original smart grid only included the exchange of               
coal-generated electricity between individual homes, corporate buildings, utilities, and power          
plants. However, solely relying on these primary sources of energy has become unsustainable.             
Thus, there is a need for efforts towards more innovative and renewable energy methods. Wind               
power, biomass, hydroelectric, and solar power are just a few of these kinds of renewable energy                
approaches that are naturally replenished on a human timescale. We focus on energy generated              
from solar power for forecasting analysis. 

With these advancements in obtaining energy, it has become imperative to analyze their             
input to the overall smart grid. The relationship between how much electricity a             
house/building/unit needs and how much solar energy the respective building can produce proves             
to be vital. The forecasting of solar generation and power consumption and the effective              
dispersion of electricity are two important factors that add value to the whole smart grid. The                
way renewable energies are integrated into the grid affects the overall performance of the smart               
grid. Thus, this project’s goals were two-fold. On a smaller scale, we look at forecasting the                
power consumption and solar power generation of a single home in the Amherst area. We build a                 
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dashboard to visualize these predictions. On the larger scale, we consider a simplified version of               
the german electric grid, extracted from OpenStreetMap, and estimated average values of power             
generation and demand to simulate the optimal dispatch of power among various energy sources.              
Lastly, we consider a preliminary stochastic model for setting a renewable energy policy. 
 
2. Single Home Forecasting 
 
2.1. The Data 

We used a single home's electricity consumption and solar generation data. We also used              
weather data from around the home to complement the electrical data. Data was obtained from a                
collection of datasets called the Smart* Data Set for Sustainability which is part of the Umass                
Trace Repository. 

2.2. Model Predictor Selection 
We began with a full model of 14 predictors. Then we ran a multiple linear regression                

model. We performed forward, backward, forward stepwise and ANOVA variable selection           
using an AIC criterion of α =.05 to choose which variables to keep in the model. We chose the                   
method that resulted in the greatest adjusted R-squared value in the model results. 

2.3. Model - EWMA & Gradient Boosting Models 
In order to establish a model of these forecasting methods, we incorporated an             

exponentially weighted moving average (EWMA) term as well as a Gradient Boosting Model             
(GBM). An EWMA is a first-order infinite impulse response filter that applies weighting factors              
which decrease exponentially. This metric was a strong predictor in both our use and gen               
gradient boosting models. We included this metric to capture recent trend information in the time               
series of use and gen. Mathematically, the formula for EWMA is as follows: 
 

[Y 1 )Y 1 ) Y ] 1 ) SSt = α t + ( − α t−1 + 1 − α + ( − α k
t−k + ( − α k+1

t−(k+1) (1) 

EWMA (at time t) is a weighted sum of the datum power values. is the weight of the    St          Y t       
initial datum point is . A GBM is a machine learning model which builds an   Y t−i  α(1 )  − α i            
ensemble of decision trees in a stepwise fashion so that the latter models learn from the mistake                 
of the prior models. 

2.4. Dashboard 
We developed a interactive analytics and visualization tool for assessing how variations            

in a set of parameters affect the predictive accuracy of solar power generation and power               
consumption forecasting models applied to a single home. The tool was created using RShiny              
and a variety of other R packages. There are four main tabs on this dashboard: instructional,                
summary statistics, power consumption and solar power generation. The power consumption and            
solar power generation pages both include a plot of the test data, a table of predictions on the test                   
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data which includes the actual values for comparison, the mean squared error of the model on the                 
test data, and a control panel used to adjust various parameters (listed below). The summary               
statistics page contains basic information and visualizations of the dataset being used. 

The adjustable parameters on the power consumption and solar power generation tabs 
include: 

● Forecast Horizon: ​length of time into the future where the prediction is made 
● Analysis Range:​ any window of time from January 1st, 2014 - December 15th, 2016 to 

use for training and testing data 
● Date to End Training: ​date which splits analysis range into training and testing data 
● Time Period:​ range of hours during the day for which the predictions are made 
● Viewing Window Range: any window of time within the test data range 

The forecasting models use a fixed number of predictors variables which are related to 
weather and electricity. The variables are summarised below. 

● Predictor variables used in demand prediction:​ current day’s power use (over 
specified time period), exponentially-weighted moving average of use over previous n 
days (n is forecast horizon), current day’s humidity and temperature, day of the week, 
season and month. 

● Predictor variables used in solar prediction:​ current day’s power generation (over 
specified time period), exponentially-weighted moving average of generation over 
previous n days (n is forecast horizon), season month, and current day’s humidity, 
temperature, visibility, wind bearing, pressure, precipitation and cloud-cover. 

A screenshot of the dashboard is given below: 
Figure 1: Screenshot of the dashboard 
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3. Electric Grid Simulation 
 
3.1. OSM power graph generation 

As we transition into a macroscale problem, a fundamental first step is obtaining a full 
featured power grid that is compatible with our power system analysis libraries. In order to yield 
meaningful results, we established two mains goals that guided us in this step: 

1. The power grid data must describe an actual grid, designed and currently used in a 
developed country 

2. The grid will be simplified in graph form while retaining every parameters of the power 
grid. 

In order to achieve these two goals, we used Open Street Map, Osmosis, and SciGrid in this 
respective order. Their purpose is as follows: 
-Open Street Map (OSM) allows the user to export precise geographical information in a given 
zone. 
-Osmosis will process OSM data and filter elements belonging to the power grid. 
-SciGrid takes filtered OSM data and abstracts it into a graph that showcases “relations”, when 
two stations are linked by a line. SciGrid also populates a postgreSQL database with this graph 
that we can subsequently call in power system analysis functions. The following example 
showcases the importance of this process: if we observe power lines in a city, we can easily see 
that two stations are linked by segmented lines to circumvent topography or other obstacles. 
OSM preserves this complexity, and the abstraction process is necessary to represent the line as 
an edge instead of multiple segments. Power analysis packages are unable to work with 
segmented links. 
We decided to use the German grid since it is by far the most descriptive OSM data available as 
of 2019. 
3.2. Non-linear optimal power flow 

For the next phase of our project, we looked at using this simplified German electric grid 
to do an analysis of the optimal dispatch of power throughout a typical 24 hour day. At each of 
our hourly snapshots, we used a python package called Pypsa  to solve the linearized power flow 1

equations at each node of the OSM graph, and find the solution that minimized our cost function. 
The cost function used in this analysis is given below: 
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The indices , , and refer to the buses, generators of each energy type located at each bus,  n  s   t               
and time step, respectively. While the term “bus” typically refers to an electric bus, in this study                 
we refer to any graph node for which we want to evaluate power flow at as a “bus”. Therefore                   

1 ​https://pypsa.org/ 
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we can attach multiple components (generators, loads, transformers, etc) to a single bus. The              
types of energy that can exist at each node are solar power, gas, offshore wind, onshore wind,                 
run of river hydroelectricity, brown coal, hard coal, and nuclear power. A full description of the                
variables in the equation is given in table 1 below. Essentially, the function we wish to minimize                 
describes the sum of the cost of extending nominal power of any generators in the network, the                 
cost of increasing the nominal level of power in storage, the cost of increasing a line’s capacity                 
for power flow, the operational costs for dispatch of power generation and storage, and the               
shutdown and startup costs for each power source. The data used for calculating such values               
were found in Brown et al. 2018. These include rough estimates for the power demand, range of                 
achievable power generation for each energy type, and marginal costs of power generation and              
storage, broken down by location and time of day (hourly over a 24 hour period). 
 

- Table 1: variables considered for cost minimization 
 

Notation Definition 

cn,s  Cost of extending nominal power of generator , at bus , by one MWs n  

gn,s  Nominal power of generator  located at bus s n  

hn,s  Nominal storage of generator  located at bus s n  

cl  Cost of operating line 

F l  Capacity at line 1 

on,s,t  Marginal cost of dispatching generator , at bus , for one MWH at times n  
t  

gn,s,t  Dispatch of power at generator , at bus , at time s n t  

hn,s,t  Dispatch of storage at generator , at bus , at time s n t  

wt  Weight for time . Used to vary marginal costs of power by time of dayt  

ucs n,s,t  Startup cost of generator  at bus  and time s n t  

dcs n,s,t  Shutdown cost of generator at bus  and time s n t  

Knl  Incidence matrix. takes a value in  depending on whetherKnl − , , },{ 1 0 1  
the line l starts or ends at the node n  

dn,s,t  Excess load generated by power source  at node  at time s n t  
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Throughout this optimization, we must also obey the law of conservation of energy             

(Equation 3). This equation ensures that at every time step, any energy generated or pulled from                
storage at a node, plus/minus the power flowing in/out of connected nodes, has to sum up to the                  
excess load generated to match the demand at any given node.  

     (3)f∑
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gn,s,t + ∑
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hn,s,t − ∑

 

s
f n,s,t − ∑

 

l
Knl l,t = ∑

 

s
dn,s,t  

Lastly, the current formulation of the cost optimization function in pypsa allows for any              
given line in the network to reach its full capacity for carrying electric power. However in                
practice we do not want an electric grid operating at or near full capacity, because this risks the                  
lines overheating. If even one line fails, this can lead to cascading failures and blackouts               
throughout the grid. To reduce the risk of our optimization finding a solution that would push the                 
network close to these limits, we used an approximation as recommended in the pypsa tutorial               
where we set each line’s capacity to be only 70% of its true value. 
 

After solving for the optimal solution at each time step, we can plot the generated power                
as a function of the time of day, per type of energy source (Figure 2) as in Brown et al. 2018. The                      
most apparent trend is the resulting bell-curve of solar power. We see that most of the solar                 
energy is being produced during the mid-day hours, when we’d expect the production of solar               
energy to be most efficient. During these hours, the production of non-renewable sources such as               
coal decreases. However we see an uptick in the use of hard coal around evening hours. This                 
makes sense, because as people are returning home from work, this creates a peak time for home                 
electricity use. Since solar power cannot be generated in the evening, the generation of              
non-renewable power has to increase in order to pick up the excess demand, and it becomes                
cost-optimal to produce more electricity via coal. Overall, this optimization produces predictable            
results, but there is one odd trend in the decline of on-shore wind production throughout the day.                 
Since this 24-hour period should in theory be cyclical, we would expect the 12 GW of energy                 
produced during the last hour of the day not to differ greatly from the initial 17.5 GW produced                  
starting at midnight of the previous day. This can likely be explained as a stochastic effect - this                  
data comes from a single day of observations, where it was likely much windier at the start of the                   
day than the end of the day, changing the range of achievable power generation for onshore                
wind. 
 
 
 
 
Figure 2: Power dispatch throughout a 24-hour period, by energy source (below) 
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4. Policy Optimization using Stochastic Programming 

As seen so far, the presence of renewable energy sources in our smart grid is beneficial in                 
several counts, and therefore likely to increase substantially over the next years. This             
incorporation is gradual, however, due to the large-scale and multifaceted infrastructure it            
requires, and also subject to constraints (e.g. supply, budget, geography). Guaranteeing that this             
happens in an optimal manner would therefore allow us to minimize costs or maximize the               
impact of decisions made in the earlier stages of incorporation. 

One way to tackle this problem mathematically is using a two-stage stochastic            
programming approach. We treat renewable energy production as a limited resource that is             
stochastically produced at certain locations and then distributed throughout a consumption           
network so that energy demand is satisfied, while accounting for uncertain energy production             
and energy loss due to transportation. Many variations in the model formulation are possible, but               
the very general case of the problem is a Multi-Commodity Optimal Flow problem, where after               
weather realization (energy production) at certain nodes, energy is distributed in an optimal             
(cost-minimizing) manner throughout nodes of a graph. 

The idea to use this type of model, which is in some way inherit to the nature of the                   
problem, is inspired by Barbasoglu and Arda , who develop a two-stage stochastic model             2

(superposed with an optimal flow) to address earthquake aid distribution (in personnel and             
commodities) in Turkey. 

2 ​Barbarosoglu, G. and Arda, Y. (2004) A Two-Stage Stochastic Programming Framework for Transportation 
Planning in Disaster Response. Journal of the Operational Research Society, 55, 43-53.  
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It is possible to solve this problem efficiently using linear programming, but the model              
itself is too complicated to include here. A complete formal representation of the model will be                
included in future work, but here we present a simplified version as a proof of concept: 
 

● First Stage Decision Variables: 
○  number of solar panels located at node li i  

● Second Stage Decision Variables: 
○  conventional energy consumed at node ki i  
○  amount of renewable energy transported from node  to wij i j  

● Constraints 

○ (supply)number of  solar panels available]∑
 

 
li ≤ [ −  

○  (production is greater than distribution)lsi i ≥ ∑
 

 
wij −  

○ (demand fulfillment)w∑
 

j
cji ji + ki ≥ di −  

○ l ,  ∀ i,ki, i wij ≥ 0 j  
● Objective 

○ kV = ∑
 

 
ci i  

Where are appropriate cost and yield coefficients. This is a simplified problem that , ,ci cij si             
assumes only one commodity distributed over an undirected graph, with weather conditions            
realized independently at each node. 

While more detailed data sets are available even for this simplified model presentation,             
we solved it using freely available annual-average data (sunshine, electricity consumption and            
cost), aggregated on government websites. When limited to a six-node model for New England,              
as represented on the contiguous graph of the US, the solution is rather disappointing: robustly,               
under reasonable assumptions, all solar energy production and consumption is suggested to be             
done in CT, with all other states consuming more expensive conventional electricity (from an              
infinite supply). After taking a closer look at the dataset, this is a reasonable suggestion due to                 
the extraordinarily high price of electricity in the state compared to others… 

Overall, this result shows that annual solar energy production at a state-level does not              
have the appropriate scale for the proposed model to be effective. Variations are too small and                
because energy transfer is expensive (big losses over large distances), the production will almost              
always be local. We expect that applying the same idea to a more localized wind-generation               
model will have more success, given the larger variation of wind patterns over a landscape               
(compared to sunlight exposure), and the smaller distances that would be inherent in the              
problem. 
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5. Conclusions and future work 
A deeper understanding of Smart Grid technology and methods was achieved through 

various analyses at a smaller scale. Gradient boosting models also proved to be an efficient way 
to predict both power consumption and solar power generation for a single home. In order to 
perform more comprehensive and rigorous studies, data at a larger scale would be necessary. 
Further analysis would include scaling up forecasting for larger areas of society. This would 
include forecasting solar power generation and power consumption for cities, towns, states, and 
regions. Grid operation analysis would also be enhanced through the study of more relevant 
regions, such as New England. The study of renewable energy and costs of power would also 
benefit by acquiring more relevant data. 
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