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Abstract

In this project, we investigate the dynamics of cancer growth and
treatment using a combination of statistical, analytical, and numer-
ical approaches. We first review three common models of cancer
growth–the Exponential, Power Law, and Gompertz-Laird models–
and then fit these models to tumor volume data collected from lab-
oratory mice. We obtain parameter estimates and assess how well
each model fits the data. We also employ a Support Vector Regres-
sion (SVR) algorithm to predict growth trends based on the given
data. Finally, we examine a treatment model adapted from the com-
petitive two-equation Lotka-Volterra system, and perform a stability
analysis and obtain numerical results.
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1 Introduction

According to this year’s annual report by the American Cancer Society, more than 1.7

million Americans will receive a cancer diagnosis in 2019, and more than 600 thousand Amer-

icans will die from the disease [4]. What’s more, the National Cancer Institute now projects

that more than 38 percent of the world’s population will at receive a cancer diagnosis “at

some point in their lifetimes” [1]. These statistics lay bare the scale of the devastation that

cancer continues to inflict on our society, on both a national and global scale. In the last sev-

eral decades, scientists have made great strides in understanding the biological mechanisms

of the disease, leading to improved diagnostic capabilities and chemo- and immunotherapy

treatments. However, despite much scientific progress, the 5-year survival rates for many

cancers, such as pancreatic, colorectal, and liver cancers, have been only marginally improved

in the last several decades [1]. Clearly, the disease remains a major public health issue, and

necessitates continued study and medical innovation.

At the biological level, cancer refers to a diverse family of diseases sharing a common

genesis–the uncontrolled growth of cells, arising from a breakdown in the homeostatic signaling

that governs cell division. Mathematical biology offers a promising approach to predicting the

dynamics of this faulty cell growth, with goal of furnishing insight into potential treatments.

Given the complexity of the disease, approaches to modeling cancer are numerous and

highly varied. In this paper, we opt for a combination of statistical, machine learning, and

differential equation methods to analyze tumor growth in laboratory mice. We begin by re-

viewing the Exponential, Power Law, and Gompertz-Laird models of tumor growth. We then

fit tumor volume data collected from mice to each model, obtain parameter estimates, and

assess each model’s predictive power. Next, we employ a Support Vector Regression (SVR)

algorithm to predict the growth trends in the mice data. We then review the competitive

Lotka-Volterra equations in the context cancer modeling, and present a treatment model for

tumor growth which is adapted from the Lotka-Volterra model. Finally, we conclude with a

discussion of our results and discuss some of the implications for oncology.
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2 Basic Growth Models

2.1 The Exponential Model

The Exponential model is perhaps the simplest model that is used to study cellular

growth. The model is given by

dv

dt
= αt, α > 0

where v(t) denotes the volume of cancer cells in cubic millimeters at time t, and α > 0 is

the per capita growth rate of the cancer cells. This very simple ODE has solution

v(t) = v0e
αt,

where v0 = v(t = 0) denotes the initial tumor volume. In this paper, we are interested

in macroscopic tumor growth, so it suffices to pick an initial value v0 which is O(1). For

simplicity, we take v0 = 1 mm3. The Exponential model assumes a growth rate which remains

proportional to the volume of the tumor, and hence predicts unbounded growth. While this

model has been shown to accurately describe the growth of bacteria in vitro over a period of

days, this model is generally not valid for modeling longterm growth [2].

2.2 The Power Law Model

The Power Law growth model is given by

dv

dt
= αvβ,

where α > 0 is the per capita growth rate, and β > 0 is a dimensionless constant. The Power

Law growth model is a generalization of the Exponential model in which the tumor growth

rate is assumed to be proportional to the tumor volume raised to a power β > 0 (usually

β ≤ 1). An allometric scaling argument has been put forth for choosing β = 2/3 based upon

the idea that the ratio of a tumor’s surface area to volume v is roughly proportional to v2/3

if the tumor is thought of as a sphere [7]. The solution to the model is
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v(t) =
[
α(1− β)t+ v1−β

0

] 1
1−β .

Again, we take v0 = 1 mm3, simplifying the equation to

v(t) = [α(1− β)t+ 1]
1

1−β .

The benefit of the Power Law and Exponential models is their simplicity, but they share

the characteristic that v →∞ as t→∞, which is of course not biologically realistic. Hence,

we shall consider a third model which contains a horizontal asymptote.

2.3 The Gompertz-Laird Model

The third equation we consider is the Gompertz-Laird equation, originally put forth by

A.K. Laird in 1974 [5]:

dv

dt
= v(α− β ln v).

The solution to this nonlinear ODE yields the following sigmoidal curve:

v(t) = v0 exp
[α
β

(
1− exp(−βt)

)]
.

Again, we take v0 = 1 mm3, giving the slightly simpler equation v(t) = exp
[
α
β
(1 −

exp(−βt)
]
. An important difference of the Gompertz-Laird equation is that it approaches a

limiting value. Indeed,

lim
t→∞

exp
[α
β

(
1− exp(−βt)

)]
= exp

(α
β

)
.

The parameters α and β lack a clear biological interpretation, but its clear that both

influence the shape and upper asymptote of the sigmoidal curve. These parameters also both

determine the inflection point, which occurs when

t = − 1

β
ln

(
β

α

)
,

at which time we have v(t) = eα/β−1. The Gompertz equation and its variants, including the
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Gompertz-Laird equation, have a rich history in the use of population modeling, especially

in modeling cancer growth in mice [5]. Given the extensive usage of the Gompertz equation

in the biological literature, we expect this model to exhibit the best fit for our data set.

3 Data and Model Fits

3.1 Summary of Mouse Data

The data used to fit the models consists of ten mice that had Murine Lewis lung carci-

noma. Their tumor growth was measured at various intervals for about 20 days beginning five

days after the mice were infected with the cancer. The plot below shows the tumor volume

measurements for each mouse over the course of the study.

Fig 1: Mice tumor volume data collected over 20 days.

3.2 Parameter Results

We took an individual approach to estimating the parameters, thinking of each mouse as

a realization of the tumor growth process. Using the method of maximum likelihood with

normally distributed errors [3], we obtained three sets of parameter estimates for each mice

(one set for each model). The true parameter estimates for each model were taken to be

the mean of the ten corresponding estimates. The results of the parameter fitting and the

associated standard errors are given in the table below.
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Model Mean α Std Error α Mean β Std Error β
Exponential 0.3776 0.0127 - -
Power Law 1.08623117 0.10323831 0.75070674 0.02249964
Gompertz 0.77146321 0.03791247 0.08738799 0.00800713

Fig 2: Parameter Fitting Results

3.3 Model Fits

We first assess the fit of the exponential model. If the tumor volume does in fact obey

the Exponential growth model, then the natural logarithm of the tumor volume should be

linear with respect to time. The log plots for all ten mice are given below.

Fig 3: Log v versus t plots for each individual.

The log plots above show an approximately linear relationship, but the fit is not perfect. In

particular, the log plots for Mice 1,3,5 and 9 clearly do not exhibit a linear fit.

We then used three different metrics to assess each model: the sum of the squared errors

(SSE), the Bayesian information criterion (BIC), and Akaike information criterion (AIC). The

equations for these metrics are given below.
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SSE =
∑

(yi − ŷi)2,

AIC = n log

(
SSE

n

)
+ 2p

BIC = n log

(
SSE

n

)
+ p log(n)

In the above equations, the yi’s are the actual values, the ŷi’s are the predicted values, n

is the number of data points, and p is the number of parameters in the model.

Model Mean SSE Mean AIC Mean BIC
Exponential 79.00 20.64 21.02
Power Law 0.67 -33.69 -32.93
Gompertz 1.40 -28.61 -27.85

Fig 4: Goodness of fit results.

For all three metrics, the lower the number the better the fit. We see that the Power Law

model had the best fit by all three metrics, whereas the Exponential model had the poorest

fit across all three metrics.

3.4 Assessing Predictive Ability

We also tested the predictive ability of each model. To do this we computed parameter

estimates based on the first six data points for each mouse, and then used these parameters

to predict the remaining points. We used the root mean squared error (RMSE) as our metric

for assessing the accuracy of the predicted data, which is calculated by the following formula:

RMSE =

√∑
(yi − ŷi)2

n

The results are summarized in the figures below.

Metric Power Law Gompertz Exponential SVR
Mean RMSE 303.03 451.17 7426.66 361.93

Fig 5: Predictive Ability based on the RMSE.

The results in table above show that the Power Law predicted the latter four data points

with the highest accuracy. This result is in agreement with our earlier finding that the Power
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Fig 6a: Gompertz-Laird Predictions Fib 6b: Power Law Predictions

Law fit all ten data points the best. We believe, however, that the Gompertz model would

exhibit the best fit if the data was taken over a longer period of time, as the growth rate of

the tumor should eventually slow down.

3.5 A Support Vector Regression Model

We also constructed a model using a more advanced technique: Support Vector Machine

Regression (SVR). Normally, SVR is used with data sets much larger than ours, but we feel it

is a useful test of how a more sophisticated method fairs against the simpler parameter-fitting

approaches. The performance of SVR is heavily influenced by the chosen hyperparameters

and the kernel used. We chose the Radial Basis Function (RBF) as our kernel, which has the

form

K(x, x′) = exp(−γ||x− x′||).

This model has two hyperparameters γ and c. The first parameter γ controls a constant

in the RBF kernel’s computation of distance between two points. The smaller γ is, the smaller

the penalty for being farther apart. The second parameter c determines a threshold for the

maximum leniency before very incorrect predictions are penalized. We selected values of

c = 103 and γ = 10−5 as our hyperparameters. The SVR’s performance on the data set for

each mouse can be seen in figures below. The blue lines indicate the true tumor data and the

red lines indicate the SVR’s predictions.
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Fig 7: SVR model predictions versus the actual data.

Fig 8: SVM training and testing data for each individual.

It’s clear from the plots above that the SVR model exhibited relatively poor predictive

ability for the average tumor volume over the last 11 days of the measurement period. Of

course, this is not surprising given the extremely small number of data points used. Looking

at the individual plots, the SVR model performed modestly well on Mice 1,5,6, and 10, but

had poor performance on the remaining mice. Again, a paucity of data was clearly the major

limiting factor in the accuracy of the model. In particular, Mouse 7 only had a single data
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point beyond day 14 on which the SVR model made a prediction.

4 Two-Strain Competition Models

In the previous sections, we took a statistical approach to analyzing tumor growth based

on single equation models. In this section, we consider a different approach based on the

stability analysis of systems of differential equations. We begin by reviewing one of the

most commonly used family of models in population biology: the competitive Lotka-Volterra

equations.

The competitive Lotka-Volterra equations are used to model the dynamics of competing

populations at both the micro and macroscopic level (“competition” in this case generally

refers to vying for shared resources such as food, water, space, and/or predation) [6]. The

general form for the N -species competition model is given by

dxi
dt

= rixi

(
1−

∑N
j=1 αijxj

Ki

)
, i = 1, 2, . . . , N.

where xi = xi(t) denotes the population of species xi at time t. The parameters of this

model are ri, which is the per capita growth rate of species i, and Ki, the carrying capacity

of species i, and αij, the “competitive effect” of species j on species i. This model assumes

that in the absence of competition, each species will exhibit logistic growth and tend towards

its carrying capacity as t → ∞. We now review the possible dynamics for the N = 2 case

before introducing our adapation of this model.

4.1 The Competitive Lotka-Volterra Equations

Cancer cells and healthy cells can be thought of as two species in competition for space,

oxygen, and nutrients. Letting x = x(t) represent the volume of healthy cells at time t, and

letting y = y(t) represent the volume of tumor cells at time t, the competitive Lotka-Volterra

model is

dx

dt
= rxx

(
1− x

K1

)
− b1xy
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dy

dt
= ryy

(
1− y

K2

)
− b2xy,

where all of the constants are assumed to be positive. To simply calculations, the model is

non-dimensionalized using the following change of variables: τ = rxt, M = x/K1, N = y/K2.

The dimensionless equations are then given by

dM

dτ
= M(1−M − β1N)

dN

dτ
= ρN(1−N − β2M)

where ρ := ry/rx, β1 := b1K2/rx and β2 := b2K1/ry are positive dimensionless constants.

This system has four fixed points: (M∗, N∗) = (0, 0), (1, 0), (0, 1), ( β1−1
β1β2−1

, β2−1
β1β2−1

). The first

fixed point (0, 0) corresponds to the mutual extinction of both populations. The second fixed

point (1, 0) corresponds to the case where the tumor cells are extinct and the healthy cell

population is at its carrying capacity, and the third fixed point (0, 1) corresponds to the reverse

scenario. The fourth fixed point corresponds to the case where the healthy and cancerous

cells co-exist, and is hence termed the “coexistence fixed point”. A stability analysis is used

to analyze the dynamics for the four main scenarios. The Jacobian matrix evaluated at the

generic fixed point (M∗, N∗) is given by

J(M∗,N∗) =

1− 2M∗ − β1N
∗ −β1M

∗

−ρβ2N
∗ ρ(1− 2N∗ − β2M

∗)

 .

Evaluating the Jacobian at the first three fixed-points:

J(0,0) =

(
1 0

0 ρ

)
, J(1,0) =

−1 −β1

0 ρ(1− β2)

 , J(0,1) =

1− β1 0

−ρβ2 −ρ

 .

And the Jacobian evaluated at the coexistence fixed point, which we denote by (M∗
c , N

∗
c )

comes out to

J(M∗
c ,N

∗
c ) =

 1−β1
β1β2−1

β1(1−β1)
β1β2−1

ρβ2(1−β2)
β1β2−1

ρ(1−β2)
β1β2−1

 .
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The Jacobian eigenvalues for the first three fixed-points are as follows:

(0, 0) : λ1 = 1, λ2 = ρ

(1, 0) : λ1 = −1, λ2 = ρ(1− β2)

(0, 1) : λ1 = 1− β1, λ2 = −ρ.

Since we are only interested in the cases where the coexistence fixed point to lies in the

first quadrant (since population values must be nonnegative), we must have either β1β2 < 1

or β1β2 > 1. This gives rise to four different cases: β1, β2 > 1 (case 1), β1 > 1 and β2 < 1

(case 2), β1 < 1 and β2 > 1 (case 3), and β1, β2 < 1 (case 4). We begin by noting that in

all cases, (0, 0) is a repeller because the Jacobian eigenvalues 1 and ρ are always positive. If

β1, β2 > 1, then the Jacobian eigenvalues of (1, 0) and (0, 1) are all negative, and so (1, 0) and

(0, 1) are both attractors. We also see that (1, 0) is a saddle when β2 < 1, and an attractor

when β2 > 1. Similarly, (0, 1) is a saddle when β1 < 1, and an attractor when β1 > 0. To

determine the stability of the coexistence fixed point, we check the sign of the trace and

determinant of the Jacobian matrix:

trace(J(M∗
c ,N

∗
c )) =

1− β1 + ρ(1− β2)

β1β2 − 1
, det(J(M∗

c ,N
∗
c )) = −ρ(1− β1)(1− β2)

β1β2 − 1
.

Hence, since β1 and β2 are both positive constants, β1, β2 < 1 implies that trace(J(M∗
c ,N

∗
c )) <

0 and det(J(M∗
c ,N

∗
c )) > 0, making (M∗

c , N
∗
c ) an attractor. And similarly, β1, β2 > 1 implies

that trace(J(M∗
c ,N

∗
c )) > 0 and det(J(M∗

c ,N
∗
c )) < 0, making (M∗

c , N
∗
c ) a repeller. These four cases

are summarized by the plots below.

4.2 A Two-Strain Treatment Model

We now turn to investigating the effects of incorporating a treatment term into the two-

equation competition model. We propose the following model:

dx

dt
= rxx

(
1− x

K1

)
− b1xy − c1x

dy

dt
= ryy

(
1− y

K2

)
− b2xy − c2y,
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Two-Equation Competitive Lotka-Volterra System

Case 1: β1 < 1, β2 < 1

Fig 2.1: When β1, β2 < 1, the interspecies com-
petition is low and the coexistence fixed point is
attracting. The basin of attraction is almost the
entire first quadrant.

Case 2: β1 > 1, β2 > 1

Fig 2.2: Interspecies competition his high, leading
to competitive exclusion. The species that wins
depends on the initial conditions.

Case 3: β1 < 1, β2 > 1

Fig 2.3: The competitive effect of x on y is stronger
the competitive effect of y on x leading to compet-
itive exclusion; y is driven to extinction for nearly
all initial values.

Case 4: β1 > 1, β2 < 1

Fig 2.4: The competitive effect of y on x is stronger
the competitive effect of x on y leading to compet-
itive exclusion; x is driven to extinction for nearly
all initial values.

where c1x and c2y are the treatment terms. The underlying assumption of the treatment

model is that the cancer cell growth rate decreases in direct proportion to the concentration

of a drug, which is assumed to be constant in time. The parameters c1 and c2 are positive

constants proportional to the concentration of the drug. The non-dimensionalized model is

given by

dM

dτ
= M(1−M − β1N)− δ1M

dN

dτ
= ρN(1−N − β2M)− δ2N,
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where δ1 := c1/rx and δ2 := c2/ry are nonnegative dimensionless parameters. This model

has four fixed-points:

(0, 0), (1− δ1, 0), (0, 1− δ2/ρ),

(
β1(1− δ2

ρ
) + δ1 − 1

β1β2 − 1
,
β2(1− δ1) + δ2

ρ
− 1

β1β2 − 1

)
.

Then the Jacobian matrix evaluated at the generic fixed point (M∗, N∗) is

J(M∗,N∗) =

1− 2M∗ − β1N
∗ − δ1 −β1M

∗

−ρβ2N
∗ ρ(1− 2N∗ − β2M

∗)− δ2

 .

For the first fixed point, the Jacobian matrix is

J(0,0) =

(
1− δ1 0

0 ρ− δ2

)

The eigenvalues are 1− δ1 and ρ− δ2. Hence, (0, 0) is an attractor if and only if δ1 > 1 and

δ2 > ρ. For the fixed point (1− δ1, 0), the Jacobian matrix is

J(1−δ1,0) =

δ1 − 1 β1(δ1 − 1)

0 ρ+ ρβ2(δ1 − 1)− δ2

 ,

which has eigenvalues δ1 − 1 and ρ + ρβ2(δ1 − 1) − δ2. Hence, (1 − δ1, 0) is stable if and

only if δ1 < 1 and δ2 > ρ + ρβ2(δ1 − 1). A sufficient condition for stability is δ1 < 1 and

δ2 > ρ. For the fixed point (0, 1− δ2/ρ), the Jacobian matrix is

J(0,1−δ2/ρ) =

β1( δ2
ρ
− 1)− δ1 + 1 0

−ρβ2(1− δ2
ρ

) δ2 − ρ

 ,

The eigenvalues are δ2 − ρ and β1( δ2
ρ
− 1) − δ1 + 1. Hence, (0, 1 − δ2/ρ) is stable if and

only if δ2 < ρ and δ1 > β1(δ2/ρ − 1) + 1. A sufficient condition for stability is δ2 < ρ and

δ1 > 1. And finally, the Jacobian matrix evaluated at the coexistence fixed point is

Jco =

 −M∗ −β1M
∗

−ρβ2N
∗ −ρN∗

 ,
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where (M∗, N∗) denotes the coexistence fixed point. The stability is determined by the sign

of the trace and determinant. We have

Trace(Jco) = −M∗ − ρN∗, det(Jco) = ρM∗N∗(1− β1β2).

Clearly the trace will always be negative (assuming the coexistence fixed point lies in the

first quadrant). Therefore, the coexistence fixed point is stable if and only if det(Jco) < 0,

which occurs if and only if β1β2 < 1.

Treatment Model Phase Portraits

ρ = 0.5, β1 = 0.4, β2 = 0.3, δ1 = 0.5, δ2 = 0.3

Fig 2.1: Interspecies competition is low and the intrinsic
growth rate of y is small compared to that of x. Treat-
ment effect is biased in favor of y. We see that all tra-
jectories in interior of first quadrant tend towards the
coexistence point.

ρ = 1.2, β1 = 1.5, β2 = 0.99, δ1 = 0.01, δ2 = 0.2.

Fig 2.2: Interspecies competition favors y, and the in-
trinsic growth rate of y is higher than for x. A modest
treatment effect targets y exclusively. Competitive exclu-
sion is observed; the species that ultimately wins depends
on the initial conditions.

ρ = 1.5, β1 = 0.9, β2 = 1.5, δ1 = 0.2, δ2 = 1.6.

Fig 2.3: The competitive effect of x on y is stronger the
competitive effect of y on x, while the intrinsic growth
rate of y is greater than it is for x. Treatment is signif-
icantly biased against y. We observe competitive exclu-
sion; y is driven to extinction for nearly all initial values.

ρ = 1.5, β1 = 0.9, β2 = 1.5, δ1 = 1.1, δ2 = 0.7.

Fig 2.4: The competitive effect of x on y is stronger the
competitive effect of y on x, while the intrinsic growth
rate of y is larger than for x. Treatment is biased in
favor of y, leading to competitive exclusion; x is driven
to extinction for nearly all initial values.
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5 Conclusion

In this project we analyzed tumor growth from statistical, machine learning, and differ-

ential equation perspectives. In our statistical approach, we fit the the Exponential, Power

Law, and Gompertz-Laird models to tumor volume data in mice. We found that the Power

Law model had the best fit and also the best predictive ability. This challenged our initial

assumption that the Gompertz-Laird model, the most sophisticated of the three, would have

the best fit. A possible explanation for this observation is that the sampling period of the

data was too short, obscuring a possible limiting value or a leveling off in the growth rate.

In light of the short sampling period, one might be led to believe that the exponential model

would perform well, but this was not the case. Thus, the assumption that the relative tumor

growth rate is constant in the early stages of growth is not well-supported. The strong per-

formance of the Power Law with β ≈ 3/4 may be indicative of a biological scaling law. As

noted earlier, an allometric scaling argument has been made for β = 2/3 by considering the

tumor as a sphere. Of course, this idealized assumption does not hold up in reality; tumors

are never perfectly symmetrical and come in a variety of different shapes. Since the sphere

is the shape which maximizes volume for a fixed surface area, a more oblong shape would in

theory lend to a more favorable surface area to volume ratio (for the purposes of cells’ access

to nutrients). Hence, it makes sense that the optimal value for β in the Power Law model

would be greater than 2/3.

We employed a Support Vector Regression model as a second approach. Unfortunately,

the testing data it yielded was not a faithful predictor of the actual data. This does not come

as a surprise given the paucity of training data that was used; machine learning algorithms

such as SVR typically require very large amounts of training data to perform effectively.

Another downside of the SVR model in this case is that it has less potential to furnish insight

into biological principles, unlike the previous three models which are based on assumptions

of tumor growth principles.

Lastly, we considered a slight variation of the competitive Lotka-Volterra equations which

we modified with treatment terms. Compared to the previous two approaches we took, our

results in this section are more theoretical, as we did not obtain data on healthy cells. We

showed that there exist four qualitatively different scenarios for the competing populations
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(which look almost identical to the scenarios of the original competitive Lotka-Volterra model)

and we found stability conditions for each. The conditions for the stability of the cancer-

extinction fixed point (1 − δ1, 0) is probably of most practical interest. Our finding that

δ1 < 1 and δ2 > ρ + ρβ2(δ1 − 1) gives a sense of the necessary degree and selectivity of

treatment required for cancer eradication. We see that if the treatment targets the healthy

cells beyond a certain threshold, eradication will not occur. Also, the larger the value of ρ, the

greater the treatment effect on the cancerous cells must be to eradicate them. Unfortunately,

the treatment model suffers from the unrealistic assumption that the population of cancerous

and healthy cells are well-mixed. This assumption is of course not accurate because only the

surface area of the tumors would be in contact with healthy cells. The biggest drawback of

the Lotka-Volterra treatment model is the lack of data that is needed to validate it. Hence,

our theoretical results should be taken with a grain (perhaps a lump) of salt.

One possible extension of this work would be to develop PDE equations in order to

model the spatial dynamics of cancer growth. In our project, we neglected the aspect of

spatial dynamics which was a significant shortcoming. We could then try to validate such

a model using tumor imaging data. Another possibility would be to explore the dynamics

between competing cancer strains or “quasispecies” possessing different degrees of fitness,

and maybe also attempt to formulate and solve an optimal treatment strategy problem.

Most importantly, in any future extension of our work we would make sure to obtain a much

larger data set, as our lack of data was a major limitation of our project.
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