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Definition 1. Let
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be a vector field. Then curl F is
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Example 1. We compute the curl of the vector field V (x, y, z) = (−y2, x, 0).

We now try to explain what this means. By definition, the circulation of a vector field
F around a closed curve is gotten by breaking up the curve into small portions Pi to Pi+1

multiplying the component of F in the direction of the segment Pi to Pi+1 and multiplying
by the length of of this segment. Then one adds over all the little segments. Of course
then one takes the limit as the length of the segments goes to zero for all segments. This
is how one computes work done by a force field if a particle moves around the curve.

We limit ourselves to a vector field that is entirely in the x − y plane. You can think
of this as having a third component equal to zero. We compute the circulation of vector
field F : R2 → R2, (x, y) 7→ (F1, F2) around a very small square whose bottom left point
is at (x, y). Let h be the length of a side of the square. Label the sides B=bottom, R=
right side, T= top side, L=left side. The contribution of B to the circulation is hF1, while
the contribution of T is

h(−F1 − h
∂F1

∂y
).

Thus the net contribution of the top and bottom is −∂F1

∂y
h2. Similarly the contribution of

the left and right sides is ∂F2

∂x
h2. Thus the circulation per unit area is approximately

−∂F1

∂y
+

∂F2

∂x
.

This is the magnitude of curl F in this situation, that is, it is the circulation per unit
area.

Let P be a point in R3. We explain the vector curl F at P. For a plane P containing
P let C be a small closed curve contained in plane P and let n denote a unit normal to
the plane. The curl of a vector field F at P is the vector that satisfies

< curlF, n >= circulation of F around C per unit area inside C for the plane P .

In our 2 dimensional example, we obtain curl F = (0, 0,−∂F1

∂y
+ ∂F2

∂x
).

Notation: ∇ · F = div(F ), ∇× F = curl F.
We establish one property relating the divergence and curl.
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Theorem 2. div(curlF ) = ∇ · (∇× F ) = 0.

Example of Orthogonal Streamlines
Example 3. Consider

F : R2 → R2,

(
u
v

)
7→
(

x2 − y2

2xy

)
.

Observe that ∇u = (2x,−2y) is orthogonal to ∇v = (2y, 2x). Since ∇u is orthogonal
to ∇v and also to the level curves u(x, y) = c, c ∈ R we see that ∇v is parallel to the
level curves of u. Thus we conclude that the streamlines for ∇v are the level curves of
u. Reciprocally, the level curves of v are streamlines for the vector field ∇u. We can find
many examples like this. They can be applied in many situations.

Multiple Integrals: Defintion

Notation: Let xi, xi−1 ∈ R, then ∆xi = xi − xi−1.

Definition 2. Let R be the rectangle [a, b]× [c, d] ⊆ R2. Let f : R → R be a function on
R. Let xi = a + i

n
(b− a), yj = c + j

n
(d− c). Then∫ ∫

R

fdxdy = lim
n→∞

i,j=n∑
i,j=1

f(xi, yj)∆xi∆yj

provided the limit exists.

Theorem 4. Assume that f is continuous on a rectangle R except on points in the union
of a finite number of graphs. Then the limit in the definition above exists.

Assume that f(x, y) = z is the graph of a continuous (except possibly on points in the
finite union of graphs) non-negative function. Then

∫ ∫
R

fdxdy is the volume of the solid
above the z = 0 plane and below the graph of f.

Here is a fancier case. How do we find the volume under the function f(x, y), above
the plane z = 0 and within the triangle with vertices (0, 0), (1, 0), (1, 1). Apparently this is
not covered by the above theorems. We extend the function f by making it equal to zero
outside the triangle and using the rectangle [0, 1] × [0, 1]. The singularities are all on the
line y = x and hence are allowable.

How do we compute these double integrals. These integrals are the limits of sums
in a rectangular array. Here are two ways of organizing the summing of numbers in a
rectangular array. The first method is to add the numbers in each column and then
adding these sums. A second method is to add the numbers in each row and then adding
these sums.

Formally we have

i,j=n∑
i,j=1

f(xi, yj)∆xi∆yj =

j=n∑
j=1

(
i=n∑
i=1

f(xi, yj)∆xi

)
∆yj

=
i=n∑
i=1

(
j=n∑
j=1

f(xi, yj)∆yj

)
∆xi.
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If we take the limit as n →∞, then these three sums have the same limit provided f
is bounded, and continuous outside a finite union of graphs. This is a delicate result.

Theorem 5. Assume that f is nice on a rectangle R = [a, b] × [c, d]. The first sum
converges to ∫ ∫

R

fdxdy.

The second converges to ∫ d

c

(

∫ b

a

fdx)dy.

The third converges to ∫ b

a

(

∫ d

c

fdx)dy.

These are all equal.

Example 6. Let R = [−1, 2]× [3, 4], f(x, y) = 2x2 + xy + y2. Then∫ ∫
R

=

∫ 4

3

(

∫ 2

−1

f(x, y)dx)dy.

We separate out the inside integral to get∫ 2

−1

(2x2 + xy + y2)dx = x3 + x2y + xy2 |x=2
x=−1 = 3y2 + (3/2)y + 9.

and the whole integral is ∫ y=4

y=3

(3y2 + (3/2)y + 9)dy = LTS.

We can also integrate with respect to y first.

Example 7. We find the volume of the tetrahedron bounded by the planes

x = 0, y = 0, z = 0, y − z + x = 1.

The first step is to sketch this. We sketch the intersection of the plane y − z + x = 1
with each of the planes x = 0, y = 0, z = 0. We find that the tetrahedron lies below
the z = 0 plane. Indeed, it leis below the triangle T in the z = 0 plane with vertices
(0, 0), (1, 0), (0, 1).

Up to this point we have performed double integrals only over rectangles. We deal with
integrating over a triangle theoretically by extending the integrand by the value 0. We are
only able to anti-differentiate functions given by a single formula such as ex, x2 − 7x + 1.
Here is how we get out of this difficulty. Assume that f(x) given by a formula from x = a

to x = b and is given by zero from x = b to x = c. Then
∫ c

a
fdx =

∫ b

a
fdx.
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Let f(x, y) = 1−x−y. The function f gives the height of the tetrahedron. We integrate
with respect to y first and then x. We get∫ x=1

x=0

(∫ y=1−x

y=0

fdy

)
dx.

We could also integrate with respect to x first and then with respect to y. In this case
we get ∫ y=1

y=0

(∫ x=1−y

x=0

f(x)dx

)
dy.

4


