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Cryptography basics

Cryptography is the study of secure communications. Here are
some important terms:

e Alice wants to send a message (called the plaintext) to Bob.

To hide the meaning of the message from others, she encrypts
it, transforming the plaintext into the ciphertext

Bob can decrypt the ciphertext and reveal the plaintext, but a
third party (Eve) cannot

A cipher is an algorithm for performing encryption and/or
decryption



Symmetric cryptography

In a symmetric cipher, the same secret
key is used for both encryption and
decryption.

Alice and Bob must share the same key
and keep it secret from everyone else

This is difficult — how do they exchange
keys securely?
Analogy: a locked safe.

e Alice, Bob have copies the key to open it
e Each can leave messages there for the
other to find




An easy example

Here's a cipher used by Julius Caesar: to encrypt a message, shift
each letter N steps forward in the alphabet.

e if N =3, replace every letter with the letter three steps after
it in the alphabet.

e a—d, b— e etc.

e 'winrs' — 'zlquv’
e Decrypt by shifting each letter back IV steps
e The secret key is N



An easy example

Why is this cipher so easy to break?
e The key space is small: only 26 possible keys
e key size n = log, (number of possible keys) ~ 5
e You could easily break this cipher with a brute force attack:
try every key until you find the right one.
e The cipher does not hide all the statistical properties of the
message
e Check the frequency with which each letter appears in the
ciphertext, compare to the expected frequencies of letters in
English language.
e This is an example of an analytic attack.



How to measure security

Security of a cipher depends on the best known attacks against it
and on parameters like key size

Tradeoff between security and convenience/efficiency

e Assume every practical cipher can be broken given enough
time and resources

If the best known attack is brute force. . .

e Key length n bits means 2™ possible keys to try. Impractical
for reasonable n

But if there's a more sophisticated attack with running time
polynomial in n, this is probably unsafe regardless of key size

e Moore's law: computing power per $ grows exponentially over
time (for now)

If a new attack is discovered, the cipher may not be
completely ruined; just means bigger keys are necessary



Symmetric Cryptography

e Today we have much stronger symmetric ciphers available
such as AES (Advanced Encryption Standard)

o Large key space (n = 128 or 256). Brute force attacks are
effectively impossible
o Carefully designed to prevent analytic attacks

e But all symmetric ciphers share two inherent weaknesses

e Alice and Bob must first communicate to share a key, which
requires an already secure channel

e In a network of > 3 people, each pair (e.g. Alice, Bob) needs
their own shared key.

e With N people, that's N(N — 1)/2 keys in total.



Public-key cryptography

Public-key cryptography solves these
problems

Basic idea: each person has their own
public key and (secret) private key
Invented* in 1976 by Whitfeld Diffie,
Martin Hellman, and Ralph Merkle

e Invented much earlier by GCHQ (and

probably NSA), but not published. ..

Analogy: each person has their own RS
locked mailbox with a slot to accept
incoming messages

The mailbox is the public key; the key
to open the mailbox is the private key.



Public-key cryptography outline

. Bob generates both a public key and a private key

(a) Makes his public key visible to everyone
(b) Keeps his private key secret

2. Alice encrypts a message using Bob's public key, sends it to Bob

3. Bob can decrypt the message using his private key

e Everyone can send encrypted messages to Bob. Only Bob has
the private key to decrypt these messages.

e No secure channel necessary. Alice can send Bob a message
without first sharing a secret key.

e In a network of N people, just need N public keys and NV
private keys.



How are public-key algorithms used?

Public-key ciphers are slower and less efficient than symmetric
ciphers
Modern secure communication usually works like this:

1. First use a public-key cipher to securely share a secret key for a
symmetric cipher like AES.
2. Then use the symmetric cipher to actually exchange messages.

This way we get the best of both worlds!

Based on mathematical trapdoor functions: easy
computations that are hard to reverse.

e easy-to-compute bijection f with hard-to-compute inverse f~!
Example: RSA (Rivest, Shamir, Adelman) is based on the
problem of factoring a large integer into two primes

e Easy to multiply pg = N
e But given NN, very hard to find p and ¢



The discrete logarithm

Here's another trapdoor problem. Let p be an odd prime and let b
be a generator (primitive root) of the cyclic group (Z/pZ)*.
e Given z, it's easy to compute y = b* (mod p) (use “square
and multiply” algorithm)
e But given y, it's very hard to compute z = log, y
e Different from logarithms in R where we can use numerical
techniques e.g. Newton's method
o Is there a better way than just trying every value of z7?
e The problem of finding = such that 4 =y (mod p) is called
the discrete logarithm problem (DLP)



The discrete logarithm

Example: Each number in Z/317Z appears as 3% for some z. But
there's no easy way to tell when a particular value will appear.

c ‘ 3% mod 31 ‘ ’ c ‘ 3% mod 31 ‘ ’ c ‘ 3% mod 31
0 1 11 13 22 14
1 3 12 8 23 11
2 9 13 24 24 2
3 27 14 10 25 6
4 19 15 30 26 18
5 26 16 28 27 23
6 16 17 22 28 7
7 17 18 4 29 21
8 20 19 12 30 1
9 29 20 5 31 3
10 25 21 15




Diffie-Hellman key exchange

Suppose Alice and Bob want to communicate using a symmetric
cipher like AES.

e They need to share a secret key without anyone else seeing it

e Plan: simultaneously create a key over an insecure channel
without sharing private info. This is called key exchange.

e Diffie-Hellman key exchange (DHKE) uses the difficulty of the
discrete logarithm problem to keep the key safe from
attackers.



Diffie-Hellman key exchange

DH key exchange algorithm:

e Alice and Bob choose a large prime number p and a primitive
root g € (Z/pZ)*. These numbers will be shared publicly.

e Alice chooses a random integer a modulo p to be her private
key. She calculates A = ¢* mod p, which is her public key.

e Bob chooses a random integer b modulo p to be his private
key. He calculates B = ¢ mod p, which is his public key.

e Alice and Bob both publish their public keys so everyone can
see them. They keep their private keys hidden.

Only Alice knows Everyone knows Only Bob knows
a b, 9, Av B b




Diffie-Hellman key exchange

Only Alice knows Everyone knows Only Bob knows
a b, 9, Aa B b

Now it's time to create a shared secret symmetric key.

o Alice calculates k = B* = (¢*)* = ¢ mod m
e Bob calculates k = A® = (¢%)’ = ¢®* mod m

e Now Alice and Bob both know k = g%, which they can use as
a shared secret key

e For Eve to find k, she would have to know either a or b, which
are the base-g logarithms of A and B modulo p.



A toy example

p=29,g=10
Alice chooses a = 6 for her private key. She calculates
A =10% =22 mod 29 for her public key

Bob chooses b = 21 for his private key. He calculates
B =10%! = 12 mod 29 for his public key

Alice computes k = B* = 125 = 28 mod 29
Bob computes k = A® = 2221 = 28 mod 29
The shared secret key is k = 28.



Diffie-Hellman key exchange

e Note that DHKE cannot actually send an arbitrary message;
it only generates a shared secret key.

e There is a similar cipher called EIGamal which is a true
encryption/decryption algorithm



Solving the discrete logarithm problem

In the real world, the key size is probably n = logp ~ 1024
(i.e. pis about 308 digits!)
Brute force attack: try all 21024 values
e running time O(p) = O(2").
e would take many, many years even for a supercomputer
But there are some clever algorithms which speed things up:

e Pollard rho

e Pollard Kangaroo

e Shanks / Baby-step giant-step

This type of algorithm is called a “Birthday attack”

* Running time O(,/p) = O (2%)

o Better than brute force; equivalent to trying 2°'2 numbers
instead of 21024,

o Still slow, but doubles the necessary key size for a given
security level



Discrete log algorithms: index calculus

There's a much better DLP algorithm called index calculus.
e Uses the fact that many integers modulo p are products of

lots
[ ]

of small primes (smooth numbers)

Create a factor base of small primes a1, as,...,ay
Try to factor b* =[], a* for different values of k. Each one

gives us a linear equation. Need n independent equations.
Solving this system gives you the discrete log z; = log; a; of
each prime in the base

Now try to factor b™y =[] al' for some small m

i=1"
logy=>_; xi —m

e Running time is (more or less) O (ec v logp)

e |C is strong enough that it forces us to use much larger keys
for DHKE



Discrete log in other groups

e The DLP we've seen so far is the (Z/pZ)* version.
e Homomorphism Z — Z/pZ lets us use information about Z
(e.g. prime factorization) to understand Z/pZ
e This is why index calculus works — (Z/pZ)* is too easy
e But we can extend the DLP to other finite abelian groups.
For instance, an elliptic curve E(F,)
o Birthday attacks like Pollard rho will work in any group, but
index calculus is specific to (Z/pZ)*.
e This means we can get away with smaller keys!



What is an elliptic curve?

Definition

An elliptic curve E is a smooth plane curve defined by an
equation of the form y? = 2% + ax + b for some constants a and b.
(Or actually the closure of this curve in projective space)

E(K) is the set of points on this curve defined over the field K.

e E(C) is a compact genus 1 Riemann Y
surface and a complex Lie group

e E(R) is a curve (see right)

abelian group (Mordell-Weil)

and a Lie group [\
e E(Q) is a finitely generated L x

e E(F,) is a finite abelian group
(cyclic or product of two cyclics)




Group structure of an elliptic curve

For group structure on E(Q) = {(z,y) € Q*: y* = 2® + ax + b}
we need:

1. an associative binary operation + such that for any two
elements P,Q in G, P+ Q is also in E(Q).

2. an identity element I such that P + I = P for all P in E(Q)
3. an inverse —P for each element P, such that P+ —P = 1.



Elliptic curve group operation

e Toadd P+ Q:
e Draw the line PQ Y
e PQ) intersects the curve

at exactly 3 points*
e Define P + @ to be the
reflection across the Q
x-axis of the third P

intersection point (besides
P and Q).

e Easy to prove the following: T
e P+ (@ is always rational,
so P+ Qisin E(Q)
e -+ is associative (and
commutative)
e To add P + P, draw the P+Q
tangent to the curve at P




Wait a minute...

Two questions:

1. What happens if you add two points with the same z
coordinate?
e PQ) is a vertical line
e Only intersects the curve at P and @ — there’s no third point!
2. What is the identity element?
e We need some point I such that for every point P on the curve,
P+I=Pand P+—-P=1.

To answer these questions, we need to add a point at infinity.



Think of co as a point that exists infinitely far above (and/or
below) the z-axis

Think of a vertical line PQ as passing through three points:
P, @ on the curve and cc.
o0 is the identity element

e To add P + oo, draw a vertical line through P. The line Poo
intersects the curve directly above or below P, so
P+oco=—(—P)=P.

The inverse of P is its reflection across the x-axis, —P.

e The line P(—P) intersects the curve at P, —P, andoo, so
P+ —-P=o.



Elliptic curve group operation: identity and inverse

3

e P+ —-P=0

e Q+o00=0Q
e Q+—Q =00

Yy
The identity element is co —Q
e P+oo=P P




Elliptic curve group operation: formula

Let E be an elliptic curve with equation y? = 23 4+ ax + b and let

P(x1,y1) and Q(z2,y2) be points of £(Q).
L4 |fP7$Qand I ;é,IQ, |ets:w

To—T1
31’%-‘,-(1

2y1
— 21 — x2 and let y3 = y1 — s(x1 — x3)

If P=@Q and y; #0, let s =
2

Let x3=s
Then (z3,y3) is the third intersection point of E and PQ
Therefore P+ Q = (x3, —y3).

So you don't have to actually draw lines on a graph to add points.
You can just use this formula.



Elliptic curves modulo p

For cryptography we need a finite group, so we use E(F,).
e Consider pairs (z,y) € JFg which satisfy the equation

v =23 +tax+b

Example: y> = 2% + 2 +6 mod 7

e (4,2) is a solution because 22 = 4% + 4+ 6 =4 (mod 7)
The group operation still works. (Use the formulas from the
previous slide)

E(F,) is either cyclic or a direct product of two cyclic groups
Hasse's theorem: #E(F,) = ¢+ 1 — aq(E) with
lag(E)| < 2\/q
e Sato-Tate conjecture: distribution of a,(E) among curves
defined over I,



The Elliptic Curve Discrete Log Problem

If you have a number n and a point P on the curve, it's easy
to add P to itself n times and find the point nP

e Fast algorithm “double and add” (analogous to “square and
multiply” for exponentiation mod m)
But, if you have P and an arbitrary point @), how do you find
a number n such that P added to itself n times is Q)7
o If you keep adding P you'll eventually hit every point on the
curve, but in an unpredictable order.
This is the discrete log problem,in the group E(IF,;) instead of
(Z/pZ)*. We call it ECDLP

ECDH is a version of Diffie-Helman key exchange that uses
the E(F,) version of the discrete logarithm problem.



Elliptic Curve Diffie-Hellman

Alice and Bob want to securely generate a shared secret key

e They agree on an elliptic curve E, a prime p, and a base point
P on E. These things are all shared publicly.

e Alice chooses a random positive integer a to be her private
key. She adds P to itself a times to get a point A = aP on
E. This is her public key.

e Bob chooses a random positive integer b to be his private key.
He adds P to itself b times to get a point B =bP on E. This
is his public key.

e Alice and Bob publish their public keys, but keep their private
keys secret.



Elliptic Curve Diffie-Hellman

Alice adds B to itself a times, getting k = a(bP) = (ab)P.
Bob adds A to itself b times, getting k = b(aP) = (ab)P.

Now Alice and Bob both know k& = (ab) P, which they can use
as a shared secret key.

For a third person to find &, they would have to compute a or
b, i.e. the discrete log of A or B in E(F,).



Why use ECC?

Birthday attacks work for DLP in any group, including E(F)):
Pollard rho, Kangaroo, etc
But index calculus (mostly) only works for (Z/pZ)*

e |IC relies on using information about Z (prime factorization)

e For supersingular elliptic curves there is a version of index

calculus. But we avoid this by not using those curves

Best known attacks (for general curves) are of the
Rho/Kangaroo/BSGS type, which are much slower

Same security level as DH with much smaller keys!



Choosing a curve

Security and efficiency of ECC depends on choice of curve

e Supersingular curves (lots of endomorphisms) are bad
e E(IF,) where p has small order k modulo #E(F,) are bad
e Use Tate pairing to reduce to DLP in (IF,x)*

e Curves over Iy, have very fast arithmetic, but there are good
specialized algorithms for this case

P

e Some curves may have hidden weaknesses we can't see

e 2013: Snowden leaks reveal that Dual_EC_DRBG random
number generator has a backdoor created by the NSA

e 2015: NSA recommends phasing out ECC-based crypto
algorithms (why?)

e Example of a good curve: Curve25519 (Daniel Bernstein)

y? =23 4+ 4866622% +x p =22 —-19


Dual_EC_DRBG

HTTPS often uses
key exchange with
Curve25519

Sony PS3 used
ECDSA to sign
executables (oops)

Online messaging
protocols

And much more!

ECC in the real world

OX 0O » O @

Sources  Network  Timeline  Security » X

Security Overview

]
This page is secure (valid HTTPS).

®  Valid Certificate

The connection to this site is using a valid, trusted
server certificate.

View certificate |

8  Secure Connection

The connection to this site is encrypted and
authenticated using a strong protocol (QUIC), a
strong key exchange (X25519), and a strong cipher
(AES_128_GCM).

B Secure Resources

All resources on this page are served securely.




Thanks!

Further reading:
e Understanding Cryptography by C. Paar, J. Pelzl

e Good simple textbook on modern crypto algorithms. Written
for engineers, no hardcore number theory

e The Arithmetic of Elliptic Curves by Joseph H. Silverman
e Standard graduate text on elliptic curves.
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