Public-key Cryptography and elliptic curves

Dan Nichols
University of Massachusetts Amherst nichols@math.umass.edu
WINRS Research Symposium
Brown University
March 4, 2017

Cryptography basics

Cryptography is the study of secure communications. Here are some important terms:

- Alice wants to send a message (called the plaintext) to Bob.
- To hide the meaning of the message from others, she encrypts it, transforming the plaintext into the ciphertext
- Bob can decrypt the ciphertext and reveal the plaintext, but a third party (Eve) cannot
- A cipher is an algorithm for performing encryption and/or decryption

Symmetric cryptography

- In a symmetric cipher, the same secret key is used for both encryption and decryption.
- Alice and Bob must share the same key and keep it secret from everyone else
- This is difficult - how do they exchange keys securely?
- Analogy: a locked safe.
- Alice, Bob have copies the key to open it
- Each can leave messages there for the
 other to find

An easy example

Here's a cipher used by Julius Caesar: to encrypt a message, shift each letter N steps forward in the alphabet.

- if $N=3$, replace every letter with the letter three steps after it in the alphabet.
- $\mathrm{a} \rightarrow \mathrm{d}, \mathrm{b} \rightarrow \mathrm{e}$, etc.
- 'winrs' \rightarrow 'zlquv'
- Decrypt by shifting each letter back N steps
- The secret key is N

An easy example

Why is this cipher so easy to break?

- The key space is small: only 26 possible keys
- key size $n=\log _{2}$ (number of possible keys) ≈ 5
- You could easily break this cipher with a brute force attack: try every key until you find the right one.
- The cipher does not hide all the statistical properties of the message
- Check the frequency with which each letter appears in the ciphertext, compare to the expected frequencies of letters in English language.
- This is an example of an analytic attack.

How to measure security

Security of a cipher depends on the best known attacks against it and on parameters like key size

- Tradeoff between security and convenience/efficiency
- Assume every practical cipher can be broken given enough time and resources
- If the best known attack is brute force...
- Key length n bits means 2^{n} possible keys to try. Impractical for reasonable n
- But if there's a more sophisticated attack with running time polynomial in n, this is probably unsafe regardless of key size
- Moore's law: computing power per \$ grows exponentially over time (for now)
- If a new attack is discovered, the cipher may not be completely ruined; just means bigger keys are necessary

Symmetric Cryptography

- Today we have much stronger symmetric ciphers available such as AES (Advanced Encryption Standard)
- Large key space ($n=128$ or 256). Brute force attacks are effectively impossible
- Carefully designed to prevent analytic attacks
- But all symmetric ciphers share two inherent weaknesses
- Alice and Bob must first communicate to share a key, which requires an already secure channel
- In a network of ≥ 3 people, each pair (e.g. Alice, Bob) needs their own shared key.
- With N people, that's $N(N-1) / 2$ keys in total.

Public-key cryptography

- Public-key cryptography solves these problems
- Basic idea: each person has their own public key and (secret) private key
- Invented* in 1976 by Whitfeld Diffie, Martin Hellman, and Ralph Merkle
- Invented much earlier by GCHQ (and probably NSA), but not published...
- Analogy: each person has their own locked mailbox with a slot to accept incoming messages

- The mailbox is the public key; the key to open the mailbox is the private key.

Public-key cryptography outline

1. Bob generates both a public key and a private key
(a) Makes his public key visible to everyone
(b) Keeps his private key secret
2. Alice encrypts a message using Bob's public key, sends it to Bob
3. Bob can decrypt the message using his private key

- Everyone can send encrypted messages to Bob. Only Bob has the private key to decrypt these messages.
- No secure channel necessary. Alice can send Bob a message without first sharing a secret key.
- In a network of N people, just need N public keys and N private keys.

How are public-key algorithms used?

- Public-key ciphers are slower and less efficient than symmetric ciphers
- Modern secure communication usually works like this:

1. First use a public-key cipher to securely share a secret key for a symmetric cipher like AES.
2. Then use the symmetric cipher to actually exchange messages.

- This way we get the best of both worlds!
- Based on mathematical trapdoor functions: easy computations that are hard to reverse.
- easy-to-compute bijection f with hard-to-compute inverse f^{-1}
- Example: RSA (Rivest, Shamir, Adelman) is based on the problem of factoring a large integer into two primes
- Easy to multiply $p q=N$
- But given N, very hard to find p and q

The discrete logarithm

Here's another trapdoor problem. Let p be an odd prime and let b be a generator (primitive root) of the cyclic group $(\mathbb{Z} / p \mathbb{Z})^{\times}$.

- Given x, it's easy to compute $y=b^{x}(\bmod p)$ (use "square and multiply" algorithm)
- But given y, it's very hard to compute $x=\log _{b} y$
- Different from logarithms in \mathbb{R} where we can use numerical techniques e.g. Newton's method
- Is there a better way than just trying every value of x ?
- The problem of finding x such that $b^{x} \equiv y(\bmod p)$ is called the discrete logarithm problem (DLP)

The discrete logarithm

Example: Each number in $\mathbb{Z} / 31 \mathbb{Z}$ appears as 3^{x} for some x. But there's no easy way to tell when a particular value will appear.

c	3^{x}
0	$\bmod 31$
1	1
2	3
3	9
4	27
5	19
6	26
7	16
8	17
9	20
10	29

c	3^{x}
11	$\bmod 31$
12	13
13	8
14	24
15	10
16	30
17	28
18	22
19	4
20	12
21	5

c	3^{x}
22	$\bmod 31$
23	14
24	11
25	2
26	18
27	23
28	7
29	21
30	1
31	3

Diffie-Hellman key exchange

Suppose Alice and Bob want to communicate using a symmetric cipher like AES.

- They need to share a secret key without anyone else seeing it
- Plan: simultaneously create a key over an insecure channel without sharing private info. This is called key exchange.
- Diffie-Hellman key exchange (DHKE) uses the difficulty of the discrete logarithm problem to keep the key safe from attackers.

Diffie-Hellman key exchange

DH key exchange algorithm:

- Alice and Bob choose a large prime number p and a primitive root $g \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. These numbers will be shared publicly.
- Alice chooses a random integer a modulo p to be her private key. She calculates $A=g^{a} \bmod p$, which is her public key.
- Bob chooses a random integer b modulo p to be his private key. He calculates $B=g^{b} \bmod p$, which is his public key.
- Alice and Bob both publish their public keys so everyone can see them. They keep their private keys hidden.

Only Bob knows
b

Diffie-Hellman key exchange

Only Alice knows a

Everyone knows p, g, A, B

Only Bob knows
b

Now it's time to create a shared secret symmetric key.

- Alice calculates $k=B^{a} \equiv\left(g^{b}\right)^{a} \equiv g^{a b} \bmod m$
- Bob calculates $k=A^{b} \equiv\left(g^{a}\right)^{b} \equiv g^{a b} \bmod m$
- Now Alice and Bob both know $k=g^{a b}$, which they can use as a shared secret key
- For Eve to find k, she would have to know either a or b, which are the base $-g$ logarithms of A and B modulo p.

A toy example

- $p=29, g=10$
- Alice chooses $a=6$ for her private key. She calculates $A=10^{6} \equiv 22 \bmod 29$ for her public key
- Bob chooses $b=21$ for his private key. He calculates $B=10^{21} \equiv 12 \bmod 29$ for his public key
- Alice computes $k=B^{a} \equiv 12^{6} \equiv 28 \bmod 29$
- Bob computes $k=A^{b} \equiv 22^{21} \equiv 28 \bmod 29$
- The shared secret key is $k=28$.

Diffie-Hellman key exchange

- Note that DHKE cannot actually send an arbitrary message; it only generates a shared secret key.
- There is a similar cipher called EIGamal which is a true encryption/decryption algorithm

Solving the discrete logarithm problem

- In the real world, the key size is probably $n=\log p \approx 1024$ (i.e. p is about 308 digits!)
- Brute force attack: try all 2^{1024} values
- running time $O(p)=O\left(2^{n}\right)$.
- would take many, many years even for a supercomputer
- But there are some clever algorithms which speed things up:
- Pollard rho
- Pollard Kangaroo
- Shanks / Baby-step giant-step
- This type of algorithm is called a "Birthday attack"
- Running time $O(\sqrt{p})=O\left(2^{\frac{n}{2}}\right)$
- Better than brute force; equivalent to trying 2^{512} numbers instead of 2^{1024}.
- Still slow, but doubles the necessary key size for a given security level

Discrete log algorithms: index calculus

There's a much better DLP algorithm called index calculus.

- Uses the fact that many integers modulo p are products of lots of small primes (smooth numbers)
- Create a factor base of small primes $a_{1}, a_{2}, \ldots, a_{n}$
- Try to factor $b^{k}=\prod_{i=1}^{n} a_{i}^{e_{i}}$ for different values of k. Each one gives us a linear equation. Need n independent equations.
- Solving this system gives you the discrete $\log x_{i}=\log _{b} a_{i}$ of each prime in the base
- Now try to factor $b^{m} y=\prod_{i=1}^{n} a_{i}^{f_{i}}$ for some small m
- $\log y=\sum_{f_{i}} x_{i}-m$
- Running time is (more or less) $O\left(e^{c \sqrt[3]{\log p}}\right)$
- IC is strong enough that it forces us to use much larger keys for DHKE

Discrete log in other groups

- The DLP we've seen so far is the $(\mathbb{Z} / p \mathbb{Z})^{\times}$version.
- Homomorphism $\mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ lets us use information about \mathbb{Z} (e.g. prime factorization) to understand $\mathbb{Z} / p \mathbb{Z}$
- This is why index calculus works $-(\mathbb{Z} / p \mathbb{Z})^{\times}$is too easy
- But we can extend the DLP to other finite abelian groups. For instance, an elliptic curve $E\left(\mathbb{F}_{q}\right)$
- Birthday attacks like Pollard rho will work in any group, but index calculus is specific to $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
- This means we can get away with smaller keys!

What is an elliptic curve?

Definition

An elliptic curve E is a smooth plane curve defined by an equation of the form $y^{2}=x^{3}+a x+b$ for some constants a and b.
(Or actually the closure of this curve in projective space)
$E(K)$ is the set of points on this curve defined over the field K.

- $E(\mathbb{C})$ is a compact genus 1 Riemann surface and a complex Lie group
- $E(\mathbb{R})$ is a curve (see right) and a Lie group
- $E(\mathbb{Q})$ is a finitely generated abelian group (Mordell-Weil)
- $E\left(\mathbb{F}_{q}\right)$ is a finite abelian group (cyclic or product of two cyclics)

Group structure of an elliptic curve

For group structure on $E(\mathbb{Q})=\left\{(x, y) \in \mathbb{Q}^{2}: y^{2}=x^{3}+a x+b\right\}$ we need:

1. an associative binary operation + such that for any two elements P, Q in $G, P+Q$ is also in $E(\mathbb{Q})$.
2. an identity element I such that $P+I=P$ for all P in $E(\mathbb{Q})$
3. an inverse $-P$ for each element P, such that $P+-P=I$.

Elliptic curve group operation

- To add $P+Q$:
- Draw the line $\overline{P Q}$
- $\overline{P Q}$ intersects the curve at exactly 3 points*
- Define $P+Q$ to be the reflection across the x-axis of the third intersection point (besides P and Q).
- Easy to prove the following:
- $P+Q$ is always rational, so $P+Q$ is in $E(\mathbb{Q})$
- + is associative (and commutative)
- To add $P+P$, draw the tangent to the curve at P

Wait a minute...

Two questions:

1. What happens if you add two points with the same x coordinate?

- $\overline{P Q}$ is a vertical line
- Only intersects the curve at P and Q - there's no third point!

2. What is the identity element?

- We need some point I such that for every point P on the curve, $P+I=P$ and $P+-P=I$.
To answer these questions, we need to add a point at infinity.
- Think of ∞ as a point that exists infinitely far above (and/or below) the x-axis
- Think of a vertical line $\overline{P Q}$ as passing through three points: P, Q on the curve and ∞.
- ∞ is the identity element
- To add $P+\infty$, draw a vertical line through P. The line $\overline{P \infty}$ intersects the curve directly above or below P, so $P+\infty=-(-P)=P$.
- The inverse of P is its reflection across the x-axis, $-P$.
- The line $\overline{P(-P)}$ intersects the curve at $P,-P$, and ∞, so $P+-P=\infty$.

Elliptic curve group operation: identity and inverse

The identity element is ∞

- $P+\infty=P$
- $P+-P=\infty$
- $Q+\infty=Q$
- $Q+-Q=\infty$

Elliptic curve group operation: formula

Let E be an elliptic curve with equation $y^{2}=x^{3}+a x+b$ and let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ be points of $E(\mathbb{Q})$.

- If $P \neq Q$ and $x_{1} \neq x_{2}$, let $s=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- If $P=Q$ and $y_{1} \neq 0$, let $s=\frac{3 x_{1}^{2}+a}{2 y_{1}}$
- Let $x_{3}=s^{2}-x_{1}-x_{2}$ and let $y_{3}=y_{1}-s\left(x_{1}-x_{3}\right)$
- Then $\left(x_{3}, y_{3}\right)$ is the third intersection point of E and $\overline{P Q}$
- Therefore $P+Q=\left(x_{3},-y_{3}\right)$.

So you don't have to actually draw lines on a graph to add points. You can just use this formula.

Elliptic curves modulo p

For cryptography we need a finite group, so we use $E\left(\mathbb{F}_{q}\right)$.

- Consider pairs $(x, y) \in \mathbb{F}_{q}^{2}$ which satisfy the equation

$$
y^{2}=x^{3}+a x+b
$$

- Example: $y^{2} \equiv x^{3}+x+6 \bmod 7$
- $(4,2)$ is a solution because $2^{2} \equiv 4^{3}+4+6 \equiv 4(\bmod 7)$
- The group operation still works. (Use the formulas from the previous slide)
- $E\left(\mathbb{F}_{q}\right)$ is either cyclic or a direct product of two cyclic groups
- Hasse's theorem: $\# E\left(\mathbb{F}_{q}\right)=q+1-a_{q}(E)$ with $\left|a_{q}(E)\right| \leq 2 \sqrt{q}$
- Sato-Tate conjecture: distribution of $a_{q}(E)$ among curves defined over \mathbb{F}_{q}

The Elliptic Curve Discrete Log Problem

- If you have a number n and a point P on the curve, it's easy to add P to itself n times and find the point $n P$
- Fast algorithm "double and add" (analogous to "square and multiply" for exponentiation $\bmod m$)
- But, if you have P and an arbitrary point Q, how do you find a number n such that P added to itself n times is Q ?
- If you keep adding P you'll eventually hit every point on the curve, but in an unpredictable order.
- This is the discrete log problem, in the group $E\left(\mathbb{F}_{q}\right)$ instead of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. We call it ECDLP
- ECDH is a version of Diffie-Helman key exchange that uses the $E\left(\mathbb{F}_{q}\right)$ version of the discrete logarithm problem.

Elliptic Curve Diffie-Hellman

Alice and Bob want to securely generate a shared secret key

- They agree on an elliptic curve E, a prime p, and a base point P on E. These things are all shared publicly.
- Alice chooses a random positive integer a to be her private key. She adds P to itself a times to get a point $A=a P$ on E. This is her public key.
- Bob chooses a random positive integer b to be his private key. He adds P to itself b times to get a point $B=b P$ on E. This is his public key.
- Alice and Bob publish their public keys, but keep their private keys secret.

Elliptic Curve Diffie-Hellman

- Alice adds B to itself a times, getting $k=a(b P)=(a b) P$.
- Bob adds A to itself b times, getting $k=b(a P)=(a b) P$.
- Now Alice and Bob both know $k=(a b) P$, which they can use as a shared secret key.
- For a third person to find k, they would have to compute a or b, i.e. the discrete log of A or B in $E\left(\mathbb{F}_{p}\right)$.

Why use ECC?

- Birthday attacks work for DLP in any group, including $E\left(\mathbb{F}_{p}\right)$: Pollard rho, Kangaroo, etc
- But index calculus (mostly) only works for $(\mathbb{Z} / p \mathbb{Z})^{\times}$
- IC relies on using information about \mathbb{Z} (prime factorization)
- For supersingular elliptic curves there is a version of index calculus. But we avoid this by not using those curves
- Best known attacks (for general curves) are of the Rho/Kangaroo/BSGS type, which are much slower
- Same security level as DH with much smaller keys!

Choosing a curve

Security and efficiency of ECC depends on choice of curve

- Supersingular curves (lots of endomorphisms) are bad
- $E\left(\mathbb{F}_{p}\right)$ where p has small order k modulo $\# E\left(\mathbb{F}_{p}\right)$ are bad
- Use Tate pairing to reduce to DLP in $\left(\mathbb{F}_{p^{k}}\right)^{\times}$
- Curves over $\mathbb{F}_{2^{k}}$ have very fast arithmetic, but there are good specialized algorithms for this case
- Some curves may have hidden weaknesses we can't see
- 2013: Snowden leaks reveal that Dual_EC_DRBG random number generator has a backdoor created by the NSA
- 2015: NSA recommends phasing out ECC-based crypto algorithms (why?)
- Example of a good curve: Curve25519 (Daniel Bernstein)

$$
y^{2}=x^{3}+486662 x^{2}+x \quad p=2^{255}-19
$$

ECC in the real world

- HTTPS often uses key exchange with Curve25519
- Sony PS3 used ECDSA to sign executables (oops)
- Online messaging protocols
- And much more!

Security Overview
\bullet © \triangle

This page is secure (valid HTTPS).

- Valid Certificate

The connection to this site is using a valid, trusted server certificate.

View certificate

- Secure Connection

The connection to this site is encrypted and authenticated using a strong protocol (QUIC), a strong key exchange (X25519), and a strong cipher (AES_128_GCM).

- Secure Resources

All resources on this page are served securely.

Thanks!

Further reading:

- Understanding Cryptography by C. Paar, J. Pelzl
- Good simple textbook on modern crypto algorithms. Written for engineers, no hardcore number theory
- The Arithmetic of Elliptic Curves by Joseph H. Silverman
- Standard graduate text on elliptic curves.

