Public-key Cryptography and elliptic curves

Dan Nichols University of Massachusetts Amherst nichols@math.umass.edu

WINRS Research Symposium Brown University

March 4, 2017

Cryptography is the study of secure communications. Here are some important terms:

- Alice wants to send a message (called the plaintext) to Bob.
- To hide the meaning of the message from others, she encrypts it, transforming the plaintext into the ciphertext
- Bob can decrypt the ciphertext and reveal the plaintext, but a third party (Eve) cannot
- A cipher is an algorithm for performing encryption and/or decryption

Symmetric cryptography

- In a symmetric cipher, the same secret key is used for both encryption and decryption.
- Alice and Bob must share the same key and keep it secret from everyone else
- This is difficult how do they exchange keys securely?
- Analogy: a locked safe.
 - Alice, Bob have copies the key to open it
 - Each can leave messages there for the other to find

Here's a cipher used by Julius Caesar: to encrypt a message, shift each letter ${\cal N}$ steps forward in the alphabet.

- if N = 3, replace every letter with the letter three steps after it in the alphabet.
 - a
 ightarrow d, b
 ightarrow e, etc.
 - 'winrs' \rightarrow 'zlquv'
- Decrypt by shifting each letter back N steps
- The secret key is N

An easy example

Why is this cipher so easy to break?

- The key space is small: only 26 possible keys
 - key size $n = \log_2(\text{number of possible keys}) \approx 5$
 - You could easily break this cipher with a brute force attack: try every key until you find the right one.
- The cipher does not hide all the statistical properties of the message
 - Check the frequency with which each letter appears in the ciphertext, compare to the expected frequencies of letters in English language.
 - This is an example of an analytic attack.

Security of a cipher depends on the best known attacks against it and on parameters like key size

- Tradeoff between security and convenience/efficiency
- Assume every practical cipher can be broken given enough time and resources
- If the best known attack is brute force...
 - Key length n bits means 2^n possible keys to try. Impractical for reasonable n
- But if there's a more sophisticated attack with running time polynomial in *n*, this is probably unsafe regardless of key size
 - Moore's law: computing power per \$ grows exponentially over time (for now)
- If a new attack is discovered, the cipher may not be completely ruined; just means bigger keys are necessary

Symmetric Cryptography

- Today we have much stronger symmetric ciphers available such as AES (Advanced Encryption Standard)
 - Large key space (n = 128 or 256). Brute force attacks are effectively impossible
 - Carefully designed to prevent analytic attacks
- But all symmetric ciphers share two inherent weaknesses
 - Alice and Bob must first communicate to share a key, which requires an already secure channel
 - In a network of ≥ 3 people, each pair (e.g. Alice, Bob) needs their own shared key.
 - With N people, that's N(N-1)/2 keys in total.

Public-key cryptography

- Public-key cryptography solves these problems
- Basic idea: each person has their own public key and (secret) private key
- Invented* in 1976 by Whitfeld Diffie, Martin Hellman, and Ralph Merkle
 - Invented much earlier by GCHQ (and probably NSA), but not published...
- Analogy: each person has their own locked mailbox with a slot to accept incoming messages
- The mailbox is the public key; the key to open the mailbox is the private key.

- 1. Bob generates both a public key and a private key
 - (a) Makes his public key visible to everyone
 - (b) Keeps his private key secret
- 2. Alice encrypts a message using Bob's public key, sends it to Bob
- 3. Bob can decrypt the message using his private key
 - Everyone can send encrypted messages to Bob. Only Bob has the private key to decrypt these messages.
 - No secure channel necessary. Alice can send Bob a message without first sharing a secret key.
 - In a network of N people, just need N public keys and N private keys.

How are public-key algorithms used?

- Public-key ciphers are slower and less efficient than symmetric ciphers
- Modern secure communication usually works like this:
 - 1. First use a public-key cipher to securely share a secret key for a symmetric cipher like AES.
 - 2. Then use the symmetric cipher to actually exchange messages.
- This way we get the best of both worlds!
- Based on mathematical trapdoor functions: easy computations that are hard to reverse.
 - easy-to-compute bijection f with hard-to-compute inverse f^{-1}
- Example: RSA (Rivest, Shamir, Adelman) is based on the problem of factoring a large integer into two primes
 - Easy to multiply pq = N
 - But given N, very hard to find p and q

The discrete logarithm

Here's another trapdoor problem. Let p be an odd prime and let b be a generator (primitive root) of the cyclic group $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

- Given x, it's easy to compute $y = b^x \pmod{p}$ (use "square and multiply" algorithm)
- But given y, it's very hard to compute $x = \log_b y$
 - Different from logarithms in $\mathbb R$ where we can use numerical techniques e.g. Newton's method
 - Is there a better way than just trying every value of x?
- The problem of finding x such that $b^x \equiv y \pmod{p}$ is called the discrete logarithm problem (DLP)

The discrete logarithm

Example: Each number in $\mathbb{Z}/31\mathbb{Z}$ appears as 3^x for some x. But there's no easy way to tell when a particular value will appear.

С	$3^x \mod 31$		c	$3^x \mod 31$	c	$3^x \mod 31$
0	1	1	L1	13	22	14
1	3	1	12	8	23	11
2	9	1	13	24	24	2
3	27	1	L4	10	25	6
4	19	1	L5	30	26	18
5	26	1	16	28	27	23
6	16	1	17	22	28	7
7	17	1	18	4	29	21
8	20	1	19	12	30	1
9	29	2	20	5	31	3
10	25	2	21	15		

Suppose Alice and Bob want to communicate using a symmetric cipher like AES.

- They need to share a secret key without anyone else seeing it
- Plan: simultaneously create a key over an insecure channel without sharing private info. This is called key exchange.
- Diffie-Hellman key exchange (DHKE) uses the difficulty of the discrete logarithm problem to keep the key safe from attackers.

DH key exchange algorithm:

- Alice and Bob choose a large prime number p and a primitive root g ∈ (ℤ/pℤ)[×]. These numbers will be shared publicly.
- Alice chooses a random integer a modulo p to be her private key. She calculates A = g^a mod p, which is her public key.
- Bob chooses a random integer b modulo p to be his private key. He calculates B = g^b mod p, which is his public key.
- Alice and Bob both publish their public keys so everyone can see them. They keep their private keys hidden.

Only Alice knows

Everyone knows p, q, A, B

Only Bob knows h

Only Alice knows	Everyone knows	Only Bob knows
a	p, g, A, B	b

Now it's time to create a shared secret symmetric key.

- Alice calculates $k = B^a \equiv (g^b)^a \equiv g^{ab} \mod m$
- Bob calculates $k = A^b \equiv (g^a)^b \equiv g^{ab} \mod m$
- Now Alice and Bob both know $k=g^{ab},$ which they can use as a shared secret key
- For Eve to find k, she would have to know either a or b, which are the base-g logarithms of A and B modulo p.

•
$$p = 29, g = 10$$

- Alice chooses a = 6 for her private key. She calculates $A = 10^6 \equiv 22 \mod 29$ for her public key
- Bob chooses b=21 for his private key. He calculates $B=10^{21}\equiv 12 \mod 29$ for his public key
- Alice computes $k = B^a \equiv 12^6 \equiv 28 \mod 29$
- Bob computes $k = A^b \equiv 22^{21} \equiv 28 \mod 29$
- The shared secret key is k = 28.

Diffie-Hellman key exchange

- Note that DHKE cannot actually send an arbitrary message; it only generates a shared secret key.
- There is a similar cipher called ElGamal which is a true encryption/decryption algorithm

Solving the discrete logarithm problem

- In the real world, the key size is probably $n = \log p \approx 1024$ (i.e. p is about 308 digits!)
- Brute force attack: try all 2^{1024} values
 - running time $O(p) = O(2^n)$.
 - would take many, many years even for a supercomputer
- But there are some clever algorithms which speed things up:
 - Pollard rho
 - Pollard Kangaroo
 - Shanks / Baby-step giant-step
- This type of algorithm is called a "Birthday attack"
 - Running time $O(\sqrt{p}) = O\left(2^{\frac{n}{2}}\right)$
 - Better than brute force; equivalent to trying 2^{512} numbers instead of $2^{1024}.$
 - Still slow, but doubles the necessary key size for a given security level

There's a much better DLP algorithm called index calculus.

- Uses the fact that many integers modulo p are products of lots of small primes (smooth numbers)
 - Create a factor base of small primes a_1, a_2, \ldots, a_n
 - Try to factor $b^k = \prod_{i=1}^n a_i^{e_i}$ for different values of k. Each one gives us a linear equation. Need n independent equations.
 - Solving this system gives you the discrete log $x_i = \log_b a_i$ of each prime in the base
 - Now try to factor $b^m y = \prod_{i=1}^n a_i^{f_i}$ for some small m

•
$$\log y = \sum_{f_i} x_i - m$$

- Running time is (more or less) $O\left(e^{c\sqrt[3]{\log p}}\right)$
- IC is strong enough that it forces us to use much larger keys for DHKE

- The DLP we've seen so far is the $(\mathbb{Z}/p\mathbb{Z})^{\times}$ version.
 - Homomorphism $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ lets us use information about \mathbb{Z} (e.g. prime factorization) to understand $\mathbb{Z}/p\mathbb{Z}$
 - This is why index calculus works $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is too easy
- But we can extend the DLP to other finite abelian groups. For instance, an elliptic curve $E(\mathbb{F}_q)$
 - Birthday attacks like Pollard rho will work in any group, but index calculus is specific to (ℤ/pℤ)×.
 - This means we can get away with smaller keys!

What is an elliptic curve?

Definition

An elliptic curve E is a smooth plane curve defined by an equation of the form $y^2 = x^3 + ax + b$ for some constants a and b. (Or actually the closure of this curve in projective space)

E(K) is the set of points on this curve defined over the field K.

- $E(\mathbb{C})$ is a compact genus 1 Riemann surface and a complex Lie group
- $E(\mathbb{R})$ is a curve (see right) and a Lie group
- $E(\mathbb{Q})$ is a finitely generated abelian group (Mordell-Weil)
- $E(\mathbb{F}_q)$ is a finite abelian group (cyclic or product of two cyclics)

For group structure on $E(\mathbb{Q})=\left\{(x,y)\in\mathbb{Q}^2: y^2=x^3+ax+b\right\}$ we need:

- 1. an associative binary operation + such that for any two elements P, Q in G, P + Q is also in $E(\mathbb{Q})$.
- 2. an identity element I such that P + I = P for all P in $E(\mathbb{Q})$
- 3. an inverse -P for each element P, such that P + -P = I.

Elliptic curve group operation

- To add *P* + *Q*:
 - Draw the line \overline{PQ}
 - PQ intersects the curve at exactly 3 points*
 - Define P + Q to be the reflection across the x-axis of the third intersection point (besides P and Q).
- Easy to prove the following:
 - P + Q is always rational, so P + Q is in $E(\mathbb{Q})$
 - + is associative (and commutative)
- To add P + P, draw the tangent to the curve at P

Wait a minute...

Two questions:

- 1. What happens if you add two points with the same x coordinate?
 - \overline{PQ} is a vertical line
 - Only intersects the curve at P and Q there's no third point!
- 2. What is the identity element?
 - We need some point I such that for every point P on the curve, P + I = P and P + -P = I.

To answer these questions, we need to add a point at infinity.

- Think of ∞ as a point that exists infinitely far above (and/or below) the x-axis
- Think of a vertical line \overline{PQ} as passing through three points: P, Q on the curve and ∞ .
- ∞ is the identity element
 - To add $P + \infty$, draw a vertical line through P. The line $\overline{P\infty}$ intersects the curve directly above or below P, so $P + \infty = -(-P) = P$.
- The inverse of P is its reflection across the x-axis, -P.
 - The line $\overline{P(-P)}$ intersects the curve at $P, -P, and\infty$, so $P + -P = \infty$.

Elliptic curve group operation: identity and inverse

The identity element is ∞

- $P + \infty = P$
- $P + -P = \infty$
- $Q + \infty = Q$

•
$$Q + -Q = \infty$$

Elliptic curve group operation: formula

Let E be an elliptic curve with equation $y^2 = x^3 + ax + b$ and let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be points of $E(\mathbb{Q})$.

• If $P \neq Q$ and $x_1 \neq x_2$, let $s = \frac{y_2 - y_1}{x_2 - x_1}$

• If
$$P = Q$$
 and $y_1 \neq 0$, let $s = \frac{3x_1^2 + a}{2y_1}$

• Let
$$x_3 = s^2 - x_1 - x_2$$
 and let $y_3 = y_1 - s(x_1 - x_3)$

• Then (x_3, y_3) is the third intersection point of E and \overline{PQ}

• Therefore
$$P + Q = (x_3, -y_3)$$

So you don't have to actually draw lines on a graph to add points. You can just use this formula. For cryptography we need a finite group, so we use $E(\mathbb{F}_q)$.

• Consider pairs $(x,y) \in \mathbb{F}_q^2$ which satisfy the equation

$$y^2 = x^3 + ax + b$$

- Example: $y^2 \equiv x^3 + x + 6 \mod 7$
 - (4,2) is a solution because $2^2 \equiv 4^3 + 4 + 6 \equiv 4 \pmod{7}$
- The group operation still works. (Use the formulas from the previous slide)
- $E(\mathbb{F}_q)$ is either cyclic or a direct product of two cyclic groups
- Hasse's theorem: $\#E(\mathbb{F}_q)=q+1-a_q(E)$ with $|a_q(E)|\leq 2\sqrt{q}$
 - Sato-Tate conjecture: distribution of $a_q(E)$ among curves defined over \mathbb{F}_q

The Elliptic Curve Discrete Log Problem

- If you have a number n and a point P on the curve, it's easy to add P to itself n times and find the point nP
 - Fast algorithm "double and add" (analogous to "square and multiply" for exponentiation mod m)
- But, if you have P and an arbitrary point Q, how do you find a number n such that P added to itself n times is Q?
 - If you keep adding *P* you'll eventually hit every point on the curve, but in an unpredictable order.
- This is the discrete log problem, in the group E(𝔽_q) instead of (ℤ/pℤ)[×]. We call it ECDLP
- ECDH is a version of Diffie-Helman key exchange that uses the $E(\mathbb{F}_q)$ version of the discrete logarithm problem.

Alice and Bob want to securely generate a shared secret key

- They agree on an elliptic curve *E*, a prime *p*, and a base point *P* on *E*. These things are all shared publicly.
- Alice chooses a random positive integer a to be her private key. She adds P to itself a times to get a point A = aP on E. This is her public key.
- Bob chooses a random positive integer b to be his private key. He adds P to itself b times to get a point B = bP on E. This is his public key.
- Alice and Bob publish their public keys, but keep their private keys secret.

- Alice adds B to itself a times, getting k = a(bP) = (ab)P.
- Bob adds A to itself b times, getting k = b(aP) = (ab)P.
- Now Alice and Bob both know k = (ab)P, which they can use as a shared secret key.
- For a third person to find k, they would have to compute a or b, i.e. the discrete log of A or B in E(𝔽_p).

- Birthday attacks work for DLP in any group, including $E(\mathbb{F}_p)$: Pollard rho, Kangaroo, etc
- But index calculus (mostly) only works for $(\mathbb{Z}/p\mathbb{Z})^{\times}$
 - IC relies on using information about \mathbb{Z} (prime factorization)
 - For supersingular elliptic curves there is a version of index calculus. But we avoid this by not using those curves
- Best known attacks (for general curves) are of the Rho/Kangaroo/BSGS type, which are much slower
- Same security level as DH with much smaller keys!

Choosing a curve

Security and efficiency of ECC depends on choice of curve

- Supersingular curves (lots of endomorphisms) are bad
- $E(\mathbb{F}_p)$ where p has small order k modulo $\#E(\mathbb{F}_p)$ are bad

• Use Tate pairing to reduce to DLP in $(\mathbb{F}_{p^k})^{\times}$

- Curves over \mathbb{F}_{2^k} have very fast arithmetic, but there are good specialized algorithms for this case
- Some curves may have hidden weaknesses we can't see
 - 2013: Snowden leaks reveal that Dual_EC_DRBG random number generator has a backdoor created by the NSA
 - 2015: NSA recommends phasing out ECC-based crypto algorithms (why?)
- Example of a good curve: Curve25519 (Daniel Bernstein)

$$y^2 = x^3 + 486662x^2 + x \qquad p = 2^{255} - 19$$

ECC in the real world

- HTTPS often uses key exchange with Curve25519
- Sony PS3 used ECDSA to sign executables (oops)
- Online messaging protocols
- And much more!

Thanks!

Further reading:

- Understanding Cryptography by C. Paar, J. Pelzl
 - Good simple textbook on modern crypto algorithms. Written for engineers, no hardcore number theory
- The Arithmetic of Elliptic Curves by Joseph H. Silverman
 - Standard graduate text on elliptic curves.