
Public-key Cryptography and elliptic curves

Dan Nichols
University of Massachusetts Amherst

nichols@math.umass.edu

WINRS Research Symposium
Brown University

March 4, 2017

Cryptography basics

Cryptography is the study of secure communications. Here are
some important terms:

• Alice wants to send a message (called the plaintext) to Bob.

• To hide the meaning of the message from others, she encrypts
it, transforming the plaintext into the ciphertext

• Bob can decrypt the ciphertext and reveal the plaintext, but a
third party (Eve) cannot

• A cipher is an algorithm for performing encryption and/or
decryption

Symmetric cryptography

• In a symmetric cipher, the same secret
key is used for both encryption and
decryption.

• Alice and Bob must share the same key
and keep it secret from everyone else

• This is difficult – how do they exchange
keys securely?

• Analogy: a locked safe.
• Alice, Bob have copies the key to open it
• Each can leave messages there for the

other to find

An easy example

Here’s a cipher used by Julius Caesar: to encrypt a message, shift
each letter N steps forward in the alphabet.

• if N = 3, replace every letter with the letter three steps after
it in the alphabet.

• a → d, b → e, etc.
• ’winrs’ → ’zlquv’

• Decrypt by shifting each letter back N steps

• The secret key is N

An easy example

Why is this cipher so easy to break?

• The key space is small: only 26 possible keys
• key size n = log2(number of possible keys) ≈ 5
• You could easily break this cipher with a brute force attack:

try every key until you find the right one.

• The cipher does not hide all the statistical properties of the
message

• Check the frequency with which each letter appears in the
ciphertext, compare to the expected frequencies of letters in
English language.

• This is an example of an analytic attack.

How to measure security

Security of a cipher depends on the best known attacks against it
and on parameters like key size

• Tradeoff between security and convenience/efficiency

• Assume every practical cipher can be broken given enough
time and resources

• If the best known attack is brute force. . .
• Key length n bits means 2n possible keys to try. Impractical

for reasonable n

• But if there’s a more sophisticated attack with running time
polynomial in n, this is probably unsafe regardless of key size

• Moore’s law: computing power per $ grows exponentially over
time (for now)

• If a new attack is discovered, the cipher may not be
completely ruined; just means bigger keys are necessary

Symmetric Cryptography

• Today we have much stronger symmetric ciphers available
such as AES (Advanced Encryption Standard)

• Large key space (n = 128 or 256). Brute force attacks are
effectively impossible

• Carefully designed to prevent analytic attacks

• But all symmetric ciphers share two inherent weaknesses
• Alice and Bob must first communicate to share a key, which

requires an already secure channel
• In a network of ≥ 3 people, each pair (e.g. Alice, Bob) needs

their own shared key.
• With N people, that’s N(N − 1)/2 keys in total.

Public-key cryptography

• Public-key cryptography solves these
problems

• Basic idea: each person has their own
public key and (secret) private key

• Invented* in 1976 by Whitfeld Diffie,
Martin Hellman, and Ralph Merkle

• Invented much earlier by GCHQ (and
probably NSA), but not published. . .

• Analogy: each person has their own
locked mailbox with a slot to accept
incoming messages

• The mailbox is the public key; the key
to open the mailbox is the private key.

Public-key cryptography outline

1. Bob generates both a public key and a private key

(a) Makes his public key visible to everyone
(b) Keeps his private key secret

2. Alice encrypts a message using Bob’s public key, sends it to Bob

3. Bob can decrypt the message using his private key

• Everyone can send encrypted messages to Bob. Only Bob has
the private key to decrypt these messages.

• No secure channel necessary. Alice can send Bob a message
without first sharing a secret key.

• In a network of N people, just need N public keys and N
private keys.

How are public-key algorithms used?

• Public-key ciphers are slower and less efficient than symmetric
ciphers

• Modern secure communication usually works like this:

1. First use a public-key cipher to securely share a secret key for a
symmetric cipher like AES.

2. Then use the symmetric cipher to actually exchange messages.

• This way we get the best of both worlds!

• Based on mathematical trapdoor functions: easy
computations that are hard to reverse.

• easy-to-compute bijection f with hard-to-compute inverse f−1

• Example: RSA (Rivest, Shamir, Adelman) is based on the
problem of factoring a large integer into two primes

• Easy to multiply pq = N
• But given N , very hard to find p and q

The discrete logarithm

Here’s another trapdoor problem. Let p be an odd prime and let b
be a generator (primitive root) of the cyclic group (Z/pZ)×.

• Given x, it’s easy to compute y = bx (mod p) (use “square
and multiply” algorithm)

• But given y, it’s very hard to compute x = logb y
• Different from logarithms in R where we can use numerical

techniques e.g. Newton’s method
• Is there a better way than just trying every value of x?

• The problem of finding x such that bx ≡ y (mod p) is called
the discrete logarithm problem (DLP)

The discrete logarithm

Example: Each number in Z/31Z appears as 3x for some x. But
there’s no easy way to tell when a particular value will appear.

c 3x mod 31

0 1
1 3
2 9
3 27
4 19
5 26
6 16
7 17
8 20
9 29

10 25

c 3x mod 31

11 13
12 8
13 24
14 10
15 30
16 28
17 22
18 4
19 12
20 5
21 15

c 3x mod 31

22 14
23 11
24 2
25 6
26 18
27 23
28 7
29 21
30 1
31 3

Diffie-Hellman key exchange

Suppose Alice and Bob want to communicate using a symmetric
cipher like AES.

• They need to share a secret key without anyone else seeing it

• Plan: simultaneously create a key over an insecure channel
without sharing private info. This is called key exchange.

• Diffie-Hellman key exchange (DHKE) uses the difficulty of the
discrete logarithm problem to keep the key safe from
attackers.

Diffie-Hellman key exchange

DH key exchange algorithm:

• Alice and Bob choose a large prime number p and a primitive
root g ∈ (Z/pZ)×. These numbers will be shared publicly.

• Alice chooses a random integer a modulo p to be her private
key. She calculates A = ga mod p, which is her public key.

• Bob chooses a random integer b modulo p to be his private
key. He calculates B = gb mod p, which is his public key.

• Alice and Bob both publish their public keys so everyone can
see them. They keep their private keys hidden.

Only Alice knows
a

Everyone knows
p, g, A,B

Only Bob knows
b

Diffie-Hellman key exchange

Only Alice knows
a

Everyone knows
p, g, A, B

Only Bob knows
b

Now it’s time to create a shared secret symmetric key.

• Alice calculates k = Ba ≡ (gb)a ≡ gab mod m

• Bob calculates k = Ab ≡ (ga)b ≡ gab mod m

• Now Alice and Bob both know k = gab, which they can use as
a shared secret key

• For Eve to find k, she would have to know either a or b, which
are the base-g logarithms of A and B modulo p.

A toy example

• p = 29, g = 10

• Alice chooses a = 6 for her private key. She calculates
A = 106 ≡ 22 mod 29 for her public key

• Bob chooses b = 21 for his private key. He calculates
B = 1021 ≡ 12 mod 29 for his public key

• Alice computes k = Ba ≡ 126 ≡ 28 mod 29

• Bob computes k = Ab ≡ 2221 ≡ 28 mod 29

• The shared secret key is k = 28.

Diffie-Hellman key exchange

• Note that DHKE cannot actually send an arbitrary message;
it only generates a shared secret key.

• There is a similar cipher called ElGamal which is a true
encryption/decryption algorithm

Solving the discrete logarithm problem

• In the real world, the key size is probably n = log p ≈ 1024
(i.e. p is about 308 digits!)

• Brute force attack: try all 21024 values
• running time O(p) = O(2n).
• would take many, many years even for a supercomputer

• But there are some clever algorithms which speed things up:
• Pollard rho
• Pollard Kangaroo
• Shanks / Baby-step giant-step

• This type of algorithm is called a “Birthday attack”
• Running time O(

√
p) = O

(
2

n
2

)
• Better than brute force; equivalent to trying 2512 numbers

instead of 21024.
• Still slow, but doubles the necessary key size for a given

security level

Discrete log algorithms: index calculus

There’s a much better DLP algorithm called index calculus.

• Uses the fact that many integers modulo p are products of
lots of small primes (smooth numbers)

• Create a factor base of small primes a1, a2, . . . , an
• Try to factor bk =

∏n
i=1 a

ei
i for different values of k. Each one

gives us a linear equation. Need n independent equations.
• Solving this system gives you the discrete log xi = logb ai of

each prime in the base
• Now try to factor bmy =

∏n
i=1 a

fi
i for some small m

• log y =
∑

fi
xi −m

• Running time is (more or less) O
(
ec

3√log p
)

• IC is strong enough that it forces us to use much larger keys
for DHKE

Discrete log in other groups

• The DLP we’ve seen so far is the (Z/pZ)× version.
• Homomorphism Z→ Z/pZ lets us use information about Z

(e.g. prime factorization) to understand Z/pZ
• This is why index calculus works – (Z/pZ)× is too easy

• But we can extend the DLP to other finite abelian groups.
For instance, an elliptic curve E(Fq)

• Birthday attacks like Pollard rho will work in any group, but
index calculus is specific to (Z/pZ)×.

• This means we can get away with smaller keys!

What is an elliptic curve?

Definition
An elliptic curve E is a smooth plane curve defined by an
equation of the form y2 = x3 + ax+ b for some constants a and b.
(Or actually the closure of this curve in projective space)

E(K) is the set of points on this curve defined over the field K.

• E(C) is a compact genus 1 Riemann
surface and a complex Lie group

• E(R) is a curve (see right)
and a Lie group

• E(Q) is a finitely generated
abelian group (Mordell-Weil)

• E(Fq) is a finite abelian group
(cyclic or product of two cyclics)

x

y

Group structure of an elliptic curve

For group structure on E(Q) =
{
(x, y) ∈ Q2 : y2 = x3 + ax+ b

}
we need:

1. an associative binary operation + such that for any two
elements P,Q in G, P +Q is also in E(Q).

2. an identity element I such that P + I = P for all P in E(Q)

3. an inverse −P for each element P , such that P +−P = I.

Elliptic curve group operation

• To add P +Q:
• Draw the line PQ
• PQ intersects the curve

at exactly 3 points*
• Define P +Q to be the

reflection across the
x-axis of the third
intersection point (besides
P and Q).

• Easy to prove the following:
• P +Q is always rational,

so P +Q is in E(Q)
• + is associative (and

commutative)

• To add P + P , draw the
tangent to the curve at P

x

y

P

Q

P +Q

P

P + P

Wait a minute...

Two questions:

1. What happens if you add two points with the same x
coordinate?

• PQ is a vertical line
• Only intersects the curve at P and Q – there’s no third point!

2. What is the identity element?
• We need some point I such that for every point P on the curve,

P + I = P and P +−P = I.

To answer these questions, we need to add a point at infinity.

∞

• Think of ∞ as a point that exists infinitely far above (and/or
below) the x-axis

• Think of a vertical line PQ as passing through three points:
P,Q on the curve and ∞.

• ∞ is the identity element
• To add P +∞, draw a vertical line through P . The line P∞

intersects the curve directly above or below P , so
P +∞ = −(−P) = P .

• The inverse of P is its reflection across the x-axis, −P .
• The line P (−P) intersects the curve at P,−P, and∞, so

P +−P =∞.

Elliptic curve group operation: identity and inverse

The identity element is ∞
• P +∞ = P

• P +−P =∞

• Q+∞ = Q

• Q+−Q =∞

x

y
∞

P

−P

−Q

Q

Elliptic curve group operation: formula

Let E be an elliptic curve with equation y2 = x3 + ax+ b and let
P (x1, y1) and Q(x2, y2) be points of E(Q).

• If P 6= Q and x1 6= x2, let s = y2−y1
x2−x1

• If P = Q and y1 6= 0, let s =
3x2

1+a
2y1

• Let x3 = s2 − x1 − x2 and let y3 = y1 − s(x1 − x3)

• Then (x3, y3) is the third intersection point of E and PQ

• Therefore P +Q = (x3,−y3).
So you don’t have to actually draw lines on a graph to add points.
You can just use this formula.

Elliptic curves modulo p

For cryptography we need a finite group, so we use E(Fq).

• Consider pairs (x, y) ∈ F2
q which satisfy the equation

y2 = x3 + ax+ b

• Example: y2 ≡ x3 + x+ 6 mod 7
• (4, 2) is a solution because 22 ≡ 43 + 4 + 6 ≡ 4 (mod 7)

• The group operation still works. (Use the formulas from the
previous slide)

• E(Fq) is either cyclic or a direct product of two cyclic groups

• Hasse’s theorem: #E(Fq) = q + 1− aq(E) with
|aq(E)| ≤ 2

√
q

• Sato-Tate conjecture: distribution of aq(E) among curves
defined over Fq

The Elliptic Curve Discrete Log Problem

• If you have a number n and a point P on the curve, it’s easy
to add P to itself n times and find the point nP

• Fast algorithm “double and add” (analogous to “square and
multiply” for exponentiation mod m)

• But, if you have P and an arbitrary point Q, how do you find
a number n such that P added to itself n times is Q?

• If you keep adding P you’ll eventually hit every point on the
curve, but in an unpredictable order.

• This is the discrete log problem,in the group E(Fq) instead of
(Z/pZ)×. We call it ECDLP

• ECDH is a version of Diffie-Helman key exchange that uses
the E(Fq) version of the discrete logarithm problem.

Elliptic Curve Diffie-Hellman

Alice and Bob want to securely generate a shared secret key

• They agree on an elliptic curve E, a prime p, and a base point
P on E. These things are all shared publicly.

• Alice chooses a random positive integer a to be her private
key. She adds P to itself a times to get a point A = aP on
E. This is her public key.

• Bob chooses a random positive integer b to be his private key.
He adds P to itself b times to get a point B = bP on E. This
is his public key.

• Alice and Bob publish their public keys, but keep their private
keys secret.

Elliptic Curve Diffie-Hellman

• Alice adds B to itself a times, getting k = a(bP) = (ab)P .

• Bob adds A to itself b times, getting k = b(aP) = (ab)P .

• Now Alice and Bob both know k = (ab)P , which they can use
as a shared secret key.

• For a third person to find k, they would have to compute a or
b, i.e. the discrete log of A or B in E(Fp).

Why use ECC?

• Birthday attacks work for DLP in any group, including E(Fp):
Pollard rho, Kangaroo, etc

• But index calculus (mostly) only works for (Z/pZ)×
• IC relies on using information about Z (prime factorization)
• For supersingular elliptic curves there is a version of index

calculus. But we avoid this by not using those curves

• Best known attacks (for general curves) are of the
Rho/Kangaroo/BSGS type, which are much slower

• Same security level as DH with much smaller keys!

Choosing a curve

Security and efficiency of ECC depends on choice of curve

• Supersingular curves (lots of endomorphisms) are bad

• E(Fp) where p has small order k modulo #E(Fp) are bad
• Use Tate pairing to reduce to DLP in (Fpk)×

• Curves over F2k have very fast arithmetic, but there are good
specialized algorithms for this case

• Some curves may have hidden weaknesses we can’t see
• 2013: Snowden leaks reveal that Dual_EC_DRBG random

number generator has a backdoor created by the NSA
• 2015: NSA recommends phasing out ECC-based crypto

algorithms (why?)

• Example of a good curve: Curve25519 (Daniel Bernstein)

y2 = x3 + 486662x2 + x p = 2255 − 19

Dual_EC_DRBG

ECC in the real world

• HTTPS often uses
key exchange with
Curve25519

• Sony PS3 used
ECDSA to sign
executables (oops)

• Online messaging
protocols

• And much more!

Thanks!

Further reading:

• Understanding Cryptography by C. Paar, J. Pelzl
• Good simple textbook on modern crypto algorithms. Written

for engineers, no hardcore number theory

• The Arithmetic of Elliptic Curves by Joseph H. Silverman
• Standard graduate text on elliptic curves.

	What is Public-key Cryptography?
	Definitions
	Symmetric Cryptography
	Public-key cryptography
	Diffie-Hellman Key Exchange
	Solving the discrete logarithm

	Elliptic Curve Cryptography
	Basics of elliptic curves
	Elliptic Curve Cryptography
	Advantages of ECC
	Conclusion

