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Order of vanishing of zeta functions at s = 1/2

An L-function is a meromorphic function on C derived from a Dirichlet series
associated to some object such as a number field, variety, or representation.

• Should satisfy some kind of functional equation w.r.t. a vertical line Re s = k:

Λ(s) = WΛ(k − s)

• Λ(s) is the ‘completed’ L-function
• W ∈ C is the root number, with |W | = 1.

• Heuristic: an L-function should vanish at the lowest order compatible with its
root number.

• If an L-function breaks this rule, there should be a reason.



Order of vanishing of zeta functions at s = 1/2

• Idea: look for objects with L-functions which vanish at an order higher than
required by their root numbers.

• For fields with Galois group Q8, we know the root number is ±1, so the expected
order of vanishing is 0 or 1.

• Omar [2012] computed order of vanishing at s = 1/2 of L-functions of octic
number fields with Galois group Q8.

• In all the fields Omar checked, order of vanishing is 0 or 1

• What about function fields? Let’s try quaternion extensions of Fq(t) and see if we
can find some where the zeta function vanishes to order > 1.

• We found an infinite family of quaternion function fields for which
ords=1/2 ζ(s) = 2

• This also leads to a computable example for a theorem of Ramachandran on
motivic interpretation of ords=1/2 ζ(s) for varieties over F2

p.



Generating quaternionic function fields

Theorem (Witt’s Criterion, 1936)

Let K(
√
a,
√
b) be a biquadratic extension. Then K(

√
a,
√
b)/K can be embedded in

a quaternion extension if and only if the quadratic forms aX2 + bY 2 + abZ2 and
U2 + V 2 +W 2 are K-equivalent.

Furthermore, if P = (pij) ∈ K3×3 such that

P T

 a 0 0
0 b 0
0 0 ab

P =

 1 0 0
0 1 0
0 0 1


then the quaternion extensions of K containing K(

√
a,
√
b) are of the form

K

(√
r
(

1 + p11
√
a+ p22

√
b+ p33

√
ab
))

, r ∈ K×.



Generating quaternionic function fields

• Hasse-Minkowski: two quadratic forms are equivalent over a global field K iff they
are locally equivalent at every place.

• So K(
√
a,
√
b) extends to a quaternion extension iff aX2 + bY 2 + abZ2 is locally

equivalent to U2 + V 2 +W 2 at every place p of K.
• If true, we call (a, b) a Witt pair.

• The hard part is finding the transformation matrix P . We need this to actually
generate quaternionic fields:

K

(√
r
(

1 + p11
√
a+ p22

√
b+ p33

√
ab
))

• We used Magma to find Witt pairs and compute (random) P for each.

• Different P will generate different fields (twists) lying above K(
√
a,
√
b).



A certain family of fields

Here’s one case where we can compute ords=1/2 ζ(s) explicitly.

• Let K = Fp(t) where p ≡ 5 (mod 8).
• Fp has simple quadratic reciprocity and a 4th root of unity (i) but no 8th RoU.
• Here (a, b) is a Witt pair iff a is square modulo b.

• Let a = t+ w2 for some w ∈ F×p and let b = t. We want to construct a

quaternion extension of K containing K(
√
a,
√
b).

• Here’s an explicit transformation matrix P for this case:

P =
1

2wab2

 0 2iw2ab 2wab
b(ab2 − w2) a(ab2 + w2) −iw(ab2 + w2)
−b(ab2 + w2) ia(ab2 − w2) w(ab2 − w2)


This satisfies P TAP = I3×3 where A is the matrix of aX2 + bY 2 + abZ2.



A certain family of fields

Using this matrix, we can construct a quaternion extension of K containing
K(
√
a,
√
b):

L = K

(√
1 +

ab2 + w2

2wb2

√
b+

ab2 − w2

2ab2

√
ab

)
.

Now we want to prove that the zeta function ζ(s) of this field has ords=1/2 ζ(s) = 2.



Computing Genus of L

The biquadratic field K(
√
a,
√
b) has genus zero:

• Defining polynomial of K(
√
a,
√
b) over Fp(t) is x4 − 2(2t+ w2)x2 + w4

• t = (x4 − 2w2x2 + w4)/(4x2), so actually this field is just Fp(x) – the field of
functions of a projective line.

Rewrite primitive element for L in terms of x:

L = Fp(x)

(√
(x6 + 2wx5 + w2x4 + 8wx3 − w4x2 − 2w5x− w6)2

16wx3(x− w)(x+ w)3(x2 + w2)

)

= Fp(x)

(√
wx(x4 − w4)

)

This is the field of functions of the curve y2 = wx(x4 − w4). Or with a quick change
of variables, the curve Y 2 = X(X4 − 1). This is a hyperelliptic curve of genus 2.



Computing #C(Fp)
So L is the field of functions of a genus-2 curve C1 : Y 2 = X(X4 − 1). The zeta
function is then

ζ(s) = exp

( ∞∑
k=1

#C(Fpk)

k
(p−s)k

)
=

P (q−s)

(1− p−s)(1− p1−s)

where P (T ) ∈ Z[T ] has degree 4. To find ζ(s), we start by computing #C(Fp).

• Recall p ≡ 5 mod 8. Let i ∈ Fp be a square root of -1. Note i is not a square.

• let h(X) = X(X4 − 1) = X(X + 1)(X − 1)(X + i)(X − i). There are 5 roots,
each of which gives one point on the curve.

• For all X outside the roots of h, h(iX) = ih(X). Since i is not square, exactly
one of h(X), h(iX) is a square.

• So half of the non-roots yield 2 points each, the other half yield zero points.

• Total number of projective points is #C1(Fp) = p+ 1.

However we can’t use this trick for Fp2 because in this field, i is a square.



Computing #C(Fp2)

Let C2 be the curve Y 2 = X6 + 5X4− 5X4− 1. The curves C1 and C2 are birationally
equivalent over Fp4 , but not over Fp2 . So in Fp2 the two differ by a quadratic twist.

• We have two natural maps from C2 to the supersingular elliptic curve
E : Y 2 = X3 + 5X2 − 5X − 1.

• These extend to maps on the Jacobian, meaning J(C2) ' E × E.

• Cassels, Flynn:

#J(C)(Fp) =
1

2
#C(Fp2) +

1

2
(#C(Fp))

2 − p

We can use this to compute #C2(Fp2) = p2 + 4p+ 1.

• Since C2 is a quadratic twist of C1, this means #C1(Fp2) = p2 − 4p+ 1.



The zeta function

We computed #C1(Fp) = p+ 1 and #C1(Fp2) = p2 − 4p+ 1. We then find that the
zeta function must be

ζ(s) =
(1− p1−2s)2

(1− p−s)(1− p1−s)
and so clearly ords=1/2 ζ(s) = 2.

Theorem
Let K = Fp(t) where p ≡ 5 (mod 8) and let w ∈ F×p . Let a = t+ w2 and b = t.

Let α2 = 1 + ab2+w2

2wb2

√
b+ ab2−w2

2ab2

√
ab and let L = K(α). Then

(1) Gal(L/K) = Q8, meaning the root number of ζ(K, s) is ±1

(2) The genus is g(L) = 2

(3) ords=1/2 ζ(K, s) = 2.



Consequences

• Ramachandran (2005): Let X be a smooth projective variety over Fp2 . Let E be
a certain supersingular elliptic curve over Fp2 . Then

−2 ords=1/2 ζ(X, s) =
∑

(−1)jjrj

where rj is the rank of the Weil-ètale cohomology group Hj
W (X,E).

• In fact, r0 = r1 = 2 ords=1/2 ζ(X, s) and all others are 0.

• If X is a curve defined over Fp, let ζ(X, s) be the zeta function of X/Fp and let
ζ2(s) be the zeta function of X/Fp2 . Then ords=1/2 ζ2(s) = 2 ords=1/2 ζ(s).

• Our family of curves provides a computable example where ords=1/2 ζ2(s) = 4 is
higher than required by the root number.



Experimental data

• For this same type of extension but
with p ≡ 1 mod 8, we found
experimentally that ords=1/2 ζ(s) = 0.
Not proven because counting points is
a lot harder here.

• For Witt pairs where deg a,deg b > 1,
we found many quaternion fields with
ords=1/2 ζ(s) > 1.

p a b g ords=1/2

5 t2 + t+ 2 t+ 2 7 4
5 t2 + 4t+ 3 2t2 + 4t+ 3 7 4
5 t2 + 4t+ 3 t2 + 4 ∗ t+ 2 7 4
5 t2 + 4t 2t+ 4 7 4



End
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