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Order of vanishing of zeta functions at s = 1/2

An L-function is a meromorphic function on C derived from a Dirichlet series
associated to some object such as a number field, variety, or representation.

e Should satisfy some kind of functional equation w.r.t. a vertical line Res = k:

A(s) = WA(k — s)

o A(s) is the ‘completed’ L-function
e W € C is the root number, with |WW| = 1.

e Heuristic: an L-function should vanish at the lowest order compatible with its
root number.

e If an L-function breaks this rule, there should be a reason.



Order of vanishing of zeta functions at s = 1/2

Idea: look for objects with L-functions which vanish at an order higher than
required by their root numbers.

For fields with Galois group QJg, we know the root number is +1, so the expected
order of vanishing is 0 or 1.

Omar [2012] computed order of vanishing at s = 1/2 of L-functions of octic
number fields with Galois group Qs.
e In all the fields Omar checked, order of vanishing is 0 or 1

What about function fields? Let’s try quaternion extensions of Fy(t) and see if we
can find some where the zeta function vanishes to order > 1.

We found an infinite family of quaternion function fields for which

ords—1 /o ((s) =2

This also leads to a computable example for a theorem of Ramachandran on
motivic interpretation of ord,_/, ((s) for varieties over IF%.



Generating quaternionic function fields

Theorem (Witt's Criterion, 1936)

Let K(y/a,/b) be a biquadratic extension. Then K(\/a,/b)/K can be embedded in
a quaternion extension if and only if the quadratic forms a X? + bY? + abZ? and
U? + V2 +W? are K-equivalent.

Furthermore, if P = (p;j) € K3%3 such that

0
pT 0
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then the quaternion extensions of KK containing K (\/a,/b) are of the form

K (\/7" (1 +p11\/5+p22\/5+1733\/6%>>7 reK*.



Generating quaternionic function fields

Hasse-Minkowski: two quadratic forms are equivalent over a global field K iff they
are locally equivalent at every place.
e So K(y/a,/b) extends to a quaternion extension iff aX? + bY? + abZ? is locally
equivalent to U2 + V2 + W?2 at every place p of K.
o If true, we call (a,b) a Witt pair.

The hard part is finding the transformation matrix P. We need this to actually
generate quaternionic fields:

K <\/7“ <1 +p11\/5+p22\/5+p33\/@>>

We used Magma to find Witt pairs and compute (random) P for each.
Different P will generate different fields (twists) lying above K ( /a, V/b).



A certain family of fields

Here's one case where we can compute ord,_; /5 ((s) explicitly.
e Let K =TF,(t) where p=>5 (mod 8).
e F, has simple quadratic reciprocity and a 4th root of unity (¢) but no 8th RoU.
e Here (a,b) is a Witt pair iff a is square modulo b.

e Let a =t + w? for some w € F)* and let b =t. We want to construct a
quaternion extension of K containing K (\/a, v/b).
e Here's an explicit transformation matrix P for this case:

0 2iw?ab 2wab
bab® —w?)  a(ab® +w?) —iw(ab® + w?)
—b(ab® +w?) ia(ab® —w?)  w(ab® —w?)

_ 1
- 2wab?

This satisfies PT AP = I35 where A is the matrix of a X2 + bY? + abZ?.



A certain family of fields

Using this matrix, we can construct a quaternion extension of K containing

K(y/a,Vb):
ab? + w? ab? — w?
L_K<\/1+ ooz Vot 5 \/ab).

Now we want to prove that the zeta function ((s) of this field has ord,_; 5 ((s) = 2.



Computing Genus of L

The biquadratic field K (y/a,v/b) has genus zero:
o Defining polynomial of K'(v/a,v/b) over F,(t) is z* — 2(2t + w?)2? + w?
o t = (2% — 2w?z? + wt)/(42?), so actually this field is just F,(z) — the field of
functions of a projective line.
Rewrite primitive element for L in terms of x:

(26 + 2w’ 4+ w2zt + 8wz — wiz? — 2wdzr — wb)?
L =TFp(=)
16wz3(z — w)(z + w)3 (22 + w?)

= Fy(0) (y/walot )

This is the field of functions of the curve y? = wa(xz* — w*). Or with a quick change
of variables, the curve Y2 = X(X* —1). This is a hyperelliptic curve of genus 2.



Computing #C'(F,)

So L is the field of functions of a genus-2 curve C; : Y2 = X(X* —1). The zeta
function is then

=ex 3 #C(Fpk) —s\k | _ P(qg™)
C(S) - p <; k (p ) ) - (1 7p,3) 1 7p1,3)

where P(T") € Z[T] has degree 4. To find ((s), we start by computing #C(F,).
e Recall p=5 mod 8. Let i € IF,, be a square root of -1. Note ¢ is not a square.
e let h(X)=X(X*—1)=X(X+1)(X —1)(X +i)(X —1). There are 5 roots,
each of which gives one point on the curve.
e For all X outside the roots of h, h(iX) = ih(X). Since i is not square, exactly
one of h(X), h(iX) is a square.
e So half of the non-roots yield 2 points each, the other half yield zero points.
e Total number of projective points is #C(F,) =p + 1.
However we can't use this trick for F,» because in this field, i is a square.



Computing #C(F,2)

Let Cy be the curve Y2 = X6 4 5X% —5X% — 1. The curves C; and Cy are birationally
equivalent over IF,4, but not over F)2. So in IF2 the two differ by a quadratic twist.

e We have two natural maps from C5 to the supersingular elliptic curve
E:Y?=X3+5X2-5X —1.
e These extend to maps on the Jacobian, meaning J(Cy) ~ E x E.

e Cassels, Flynn:

#I(O)F,) = SHOWE,2) + SHOE,)

We can use this to compute #C5(F,2) = p® +4p + 1.
e Since Cy is a quadratic twist of C1, this means #C1(F,2) = p* —4p + 1.



The zeta function

We computed #C1(Fp) =p+ 1 and #C1(Fj2) = p? — 4p + 1. We then find that the
zeta function must be
(1— pi=2)2

(1=p=*)1—p'%)

((s) =

and so clearly ord,_; /5 ((s) = 2.

Theorem

Let K =Fp(t) wherep =5 (mod 8) and let w € F;. Leta =1+ w? and b =t.
Let a? =1+ LA/ 4 a®—u® \/4h and let L = K (a). Then

(1) Gal(L/K) = Qg, meaning the root number of ((K, s) is +1

(2) The genus is g(L) = 2

(3) Ords:1/2 C(K7 S) =2.




Consequences

e Ramachandran (2005): Let X be a smooth projective variety over [F2. Let E be
a certain supersingular elliptic curve over 2. Then

—201d,_1 o (X, 8) = Y (1) jr;

where 7; is the rank of the Weil-etale cohomology group H{/‘V(X7 E).
e Infact, ro = 1 = 20rd,—; /2 ((X, s) and all others are 0.
e If X is a curve defined over I, let (X, s) be the zeta function of X/F, and let
(2(s) be the zeta function of X/IF2. Then ord,_;/; (2(s) = 2ord,_; /5 ((s).
e Our family of curves provides a computable example where ord,_; 5 (2(s) = 4 is
higher than required by the root number.



Experimental data

e For this same type of extension but
with p =1 mod 8, we found
experimentally that ord,_; /5 ((s) = 0.

Not proven because counting points is pl ¢ b g | ords=1/
5 P rt+2 t+2 7 4
a lot harder here. 5| t24+4t+3 | 22 4+4t+3 | 7 4
. . 5| t2+4t+3 | t2+4xt+2 |7 4
e For Witt pairs where dega,degb > 1, 5| e2ya % 4 4 7 4

we found many quaternion fields with
ords:1/2 Q(S) > 1.
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