Zeta Functions of a Family of Quaternion Extensions of $\mathbb{F}_{p}(t)$

Dan Nichols
nichols@math.umass.edu
University of Massachusetts

Dec. 3, 2016

The subject of this talk is thesis work supervised by Prof. Siman Wong.

Order of vanishing of zeta functions at $s=1 / 2$

An L-function is a meromorphic function on \mathbb{C} derived from a Dirichlet series associated to some object such as a number field, variety, or representation.

- Should satisfy some kind of functional equation w.r.t. a vertical line $\operatorname{Re} s=k$:

$$
\Lambda(s)=W \Lambda(k-s)
$$

- $\Lambda(s)$ is the 'completed' L-function
- $W \in \mathbb{C}$ is the root number, with $|W|=1$.
- Heuristic: an L-function should vanish at the lowest order compatible with its root number.
- If an L-function breaks this rule, there should be a reason.

Order of vanishing of zeta functions at $s=1 / 2$

- Idea: look for objects with L-functions which vanish at an order higher than required by their root numbers.
- For fields with Galois group Q_{8}, we know the root number is ± 1, so the expected order of vanishing is 0 or 1 .
- Omar [2012] computed order of vanishing at $s=1 / 2$ of L-functions of octic number fields with Galois group Q_{8}.
- In all the fields Omar checked, order of vanishing is 0 or 1
- What about function fields? Let's try quaternion extensions of $\mathbb{F}_{q}(t)$ and see if we can find some where the zeta function vanishes to order >1.
- We found an infinite family of quaternion function fields for which $\operatorname{ord}_{s=1 / 2} \zeta(s)=2$
- This also leads to a computable example for a theorem of Ramachandran on motivic interpretation of $\operatorname{ord}_{s=1 / 2} \zeta(s)$ for varieties over \mathbb{F}_{p}^{2}.

Generating quaternionic function fields

Theorem (Witt's Criterion, 1936)

Let $K(\sqrt{a}, \sqrt{b})$ be a biquadratic extension. Then $K(\sqrt{a}, \sqrt{b}) / K$ can be embedded in a quaternion extension if and only if the quadratic forms $a X^{2}+b Y^{2}+a b Z^{2}$ and $U^{2}+V^{2}+W^{2}$ are K-equivalent.

Furthermore, if $P=\left(p_{i j}\right) \in K^{3 \times 3}$ such that

$$
P^{T}\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & a b
\end{array}\right] P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

then the quaternion extensions of K containing $K(\sqrt{a}, \sqrt{b})$ are of the form

$$
K\left(\sqrt{r\left(1+p_{11} \sqrt{a}+p_{22} \sqrt{b}+p_{33} \sqrt{a b}\right)}\right), \quad r \in K^{\times} .
$$

Generating quaternionic function fields

- Hasse-Minkowski: two quadratic forms are equivalent over a global field K iff they are locally equivalent at every place.
- So $K(\sqrt{a}, \sqrt{b})$ extends to a quaternion extension iff $a X^{2}+b Y^{2}+a b Z^{2}$ is locally equivalent to $U^{2}+V^{2}+W^{2}$ at every place \mathfrak{p} of K.
- If true, we call (a, b) a Witt pair.
- The hard part is finding the transformation matrix P. We need this to actually generate quaternionic fields:

$$
K\left(\sqrt{r\left(1+p_{11} \sqrt{a}+p_{22} \sqrt{b}+p_{33} \sqrt{a b}\right)}\right)
$$

- We used Magma to find Witt pairs and compute (random) P for each.
- Different P will generate different fields (twists) lying above $K(\sqrt{a}, \sqrt{b})$.

A certain family of fields

Here's one case where we can compute $\operatorname{ord}_{s=1 / 2} \zeta(s)$ explicitly.

- Let $K=\mathbb{F}_{p}(t)$ where $p \equiv 5(\bmod 8)$.
- \mathbb{F}_{p} has simple quadratic reciprocity and a 4th root of unity (i) but no 8th RoU.
- Here (a, b) is a Witt pair iff a is square modulo b.
- Let $a=t+w^{2}$ for some $w \in \mathbb{F}_{p}^{\times}$and let $b=t$. We want to construct a quaternion extension of K containing $K(\sqrt{a}, \sqrt{b})$.
- Here's an explicit transformation matrix P for this case:

$$
P=\frac{1}{2 w a b^{2}}\left[\begin{array}{ccc}
0 & 2 i w^{2} a b & 2 w a b \\
b\left(a b^{2}-w^{2}\right) & a\left(a b^{2}+w^{2}\right) & -i w\left(a b^{2}+w^{2}\right) \\
-b\left(a b^{2}+w^{2}\right) & i a\left(a b^{2}-w^{2}\right) & w\left(a b^{2}-w^{2}\right)
\end{array}\right]
$$

This satisfies $P^{T} A P=I_{3 \times 3}$ where A is the matrix of $a X^{2}+b Y^{2}+a b Z^{2}$.

A certain family of fields

Using this matrix, we can construct a quaternion extension of K containing $K(\sqrt{a}, \sqrt{b})$:

$$
L=K\left(\sqrt{1+\frac{a b^{2}+w^{2}}{2 w b^{2}} \sqrt{b}+\frac{a b^{2}-w^{2}}{2 a b^{2}} \sqrt{a b}}\right) .
$$

Now we want to prove that the zeta function $\zeta(s)$ of this field has $\operatorname{ord}_{s=1 / 2} \zeta(s)=2$.

Computing Genus of L

The biquadratic field $K(\sqrt{a}, \sqrt{b})$ has genus zero:

- Defining polynomial of $K(\sqrt{a}, \sqrt{b})$ over $\mathbb{F}_{p}(t)$ is $x^{4}-2\left(2 t+w^{2}\right) x^{2}+w^{4}$
- $t=\left(x^{4}-2 w^{2} x^{2}+w^{4}\right) /\left(4 x^{2}\right)$, so actually this field is just $\mathbb{F}_{p}(x)$ - the field of functions of a projective line.
Rewrite primitive element for L in terms of x :

$$
\begin{aligned}
L & =\mathbb{F}_{p}(x)\left(\sqrt{\frac{\left(x^{6}+2 w x^{5}+w^{2} x^{4}+8 w x^{3}-w^{4} x^{2}-2 w^{5} x-w^{6}\right)^{2}}{16 w x^{3}(x-w)(x+w)^{3}\left(x^{2}+w^{2}\right)}}\right) \\
& =\mathbb{F}_{p}(x)\left(\sqrt{w x\left(x^{4}-w^{4}\right)}\right)
\end{aligned}
$$

This is the field of functions of the curve $y^{2}=w x\left(x^{4}-w^{4}\right)$. Or with a quick change of variables, the curve $Y^{2}=X\left(X^{4}-1\right)$. This is a hyperelliptic curve of genus 2 .

Computing $\# C\left(\mathbb{F}_{p}\right)$

So L is the field of functions of a genus-2 curve $C_{1}: Y^{2}=X\left(X^{4}-1\right)$. The zeta function is then

$$
\zeta(s)=\exp \left(\sum_{k=1}^{\infty} \frac{\# C\left(\mathbb{F}_{p^{k}}\right)}{k}\left(p^{-s}\right)^{k}\right)=\frac{P\left(q^{-s}\right)}{\left(1-p^{-s}\right)\left(1-p^{1-s}\right)}
$$

where $P(T) \in \mathbb{Z}[T]$ has degree 4 . To find $\zeta(s)$, we start by computing $\# C\left(\mathbb{F}_{p}\right)$.

- Recall $p \equiv 5 \bmod 8$. Let $i \in \mathbb{F}_{p}$ be a square root of -1 . Note i is not a square.
- let $h(X)=X\left(X^{4}-1\right)=X(X+1)(X-1)(X+i)(X-i)$. There are 5 roots, each of which gives one point on the curve.
- For all X outside the roots of $h, h(i X)=i h(X)$. Since i is not square, exactly one of $h(X), h(i X)$ is a square.
- So half of the non-roots yield 2 points each, the other half yield zero points.
- Total number of projective points is $\# C_{1}\left(\mathbb{F}_{p}\right)=p+1$.

However we can't use this trick for $\mathbb{F}_{p^{2}}$ because in this field, i is a square.

Computing $\# C\left(\mathbb{F}_{p^{2}}\right)$

Let C_{2} be the curve $Y^{2}=X^{6}+5 X^{4}-5 X^{4}-1$. The curves C_{1} and C_{2} are birationally equivalent over $\mathbb{F}_{p^{4}}$, but not over $\mathbb{F}_{p^{2}}$. So in $\mathbb{F}_{p^{2}}$ the two differ by a quadratic twist.

- We have two natural maps from C_{2} to the supersingular elliptic curve $E: Y^{2}=X^{3}+5 X^{2}-5 X-1$.
- These extend to maps on the Jacobian, meaning $J\left(C_{2}\right) \simeq E \times E$.
- Cassels, Flynn:

$$
\# J(C)\left(\mathbb{F}_{p}\right)=\frac{1}{2} \# C\left(\mathbb{F}_{p^{2}}\right)+\frac{1}{2}\left(\# C\left(\mathbb{F}_{p}\right)\right)^{2}-p
$$

We can use this to compute $\# C_{2}\left(\mathbb{F}_{p^{2}}\right)=p^{2}+4 p+1$.

- Since C_{2} is a quadratic twist of C_{1}, this means $\# C_{1}\left(\mathbb{F}_{p^{2}}\right)=p^{2}-4 p+1$.

We computed $\# C_{1}\left(\mathbb{F}_{p}\right)=p+1$ and $\# C_{1}\left(\mathbb{F}_{p^{2}}\right)=p^{2}-4 p+1$. We then find that the zeta function must be

$$
\zeta(s)=\frac{\left(1-p^{1-2 s}\right)^{2}}{\left(1-p^{-s}\right)\left(1-p^{1-s}\right)}
$$

and so clearly $\operatorname{ord}_{s=1 / 2} \zeta(s)=2$.
Theorem
Let $K=\mathbb{F}_{p}(t)$ where $p \equiv 5(\bmod 8)$ and let $w \in \mathbb{F}_{p}^{\times}$. Let $a=t+w^{2}$ and $b=t$. Let $\alpha^{2}=1+\frac{a b^{2}+w^{2}}{2 w b^{2}} \sqrt{b}+\frac{a b^{2}-w^{2}}{2 a b^{2}} \sqrt{a b}$ and let $L=K(\alpha)$. Then
(1) $\operatorname{Gal}(L / K)=Q_{8}$, meaning the root number of $\zeta(K, s)$ is ± 1
(2) The genus is $g(L)=2$
(3) $\operatorname{ord}_{s=1 / 2} \zeta(K, s)=2$.

Consequences

- Ramachandran (2005): Let X be a smooth projective variety over $\mathbb{F}_{p^{2}}$. Let E be a certain supersingular elliptic curve over $\mathbb{F}_{p^{2}}$. Then

$$
-2 \operatorname{ord}_{s=1 / 2} \zeta(X, s)=\sum(-1)^{j} j r_{j}
$$

where r_{j} is the rank of the Weil-ètale cohomology group $H_{W}^{j}(X, E)$.

- In fact, $r_{0}=r_{1}=2 \operatorname{ord}_{s=1 / 2} \zeta(X, s)$ and all others are 0 .
- If X is a curve defined over \mathbb{F}_{p}, let $\zeta(X, s)$ be the zeta function of X / \mathbb{F}_{p} and let $\zeta_{2}(s)$ be the zeta function of $X / \mathbb{F}_{p^{2}}$. Then $\operatorname{ord}_{s=1 / 2} \zeta_{2}(s)=2 \operatorname{ord}_{s=1 / 2} \zeta(s)$.
- Our family of curves provides a computable example where $\operatorname{ord}_{s=1 / 2} \zeta_{2}(s)=4$ is higher than required by the root number.

Experimental data

- For this same type of extension but with $p \equiv 1 \bmod 8$, we found experimentally that $\operatorname{ord}_{s=1 / 2} \zeta(s)=0$. Not proven because counting points is a lot harder here.
- For Witt pairs where $\operatorname{deg} a, \operatorname{deg} b>1$, we found many quaternion fields with $\operatorname{ord}_{s=1 / 2} \zeta(s)>1$.

p	a	b	g	$\operatorname{ord}_{s=1 / 2}$
5	$t^{2}+t+2$	$t+2$	7	4
5	$t^{2}+4 t+3$	$2 t^{2}+4 t+3$	7	4
5	$t^{2}+4 t+3$	$t^{2}+4 * t+2$	7	4
5	$t^{2}+4 t$	$2 t+4$	7	4

End

Thanks！
嗇 J．Cassels and E．Flynn，Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2
䡒 S．Omar，On Artin L－Functions for Octic Quaternion Fields
囯 C．Jensen，A．Ledet，and N．Yui，Generic Polynomials：Constructive Aspects of the Inverse Galois Problem
N．Ramachandran，Values of Zeta Functions at $s=1 / 2$

