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Intro

Let’s begin with the Basel problem, first posed in 1644 by Mengoli.
Find the sum of the following infinite series:

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ . . .

=
π2

6

• First solved* by Euler in 1735

sin(πx) = πx− (πx)3

3!
+

(πx)5

5!
+ . . .

sin(πx) = πx(1− x2)
(

1− x2

4

)(
1− x2

9

)
· · ·

= πx+ πx3
(

1 +
1

4
+

1

9
+ . . .

)
+ πx5 (· · · ) + . . .

• Euler’s proof was incomplete; he assumed that a power series
can be written as an infinite product of linear polynomials.

• It’s actually true in this case, but not always

• There are about a dozen other crazy ways to prove this.
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Intro

Riemann’s zeta function:

ζ(s) =

∞∑
n=1

1

ns

• This series converges for real numbers s > 1, diverges for real
numbers s ≤ 1

• s = 1 is the harmonic series
∑∞

n=1
1
n

• The Basel problem is really asking “what is the value of
ζ(2)?” complex function



The Euler product formula

A prime number is a natural number whose only divisors are 1 and
itself.

Here’s the simplest connection between the zeta function and
prime numbers:

∏
p

(
1

1− p−s

)
=
∏
p

( ∞∑
k=0

(p−s)k

)
=
∏
p

( ∞∑
k=0

(pk)−s

)

=
(
1 + 2−s + (22)−s + . . .

) (
1 + 3−s + (32)−s + . . .

)
· · ·

=1−s + 2−s + (22)−s + 5−s + (2 · 3)−s + 7−s + (23)−s + . . .

=

∞∑
n=1

1

ns
= ζ(s).



An application of the Euler product

Theorem
Let X = {x1, x2, . . . , xs} be a set of s randomly chosen integers.
Let P be the probability that gcd(X) > 1. Then P = 1/ζ(s).

• Let p be a prime. P (xi is divisible by p) = 1/p.

• P (s random numbers are all divisible by p) = (1/p)s

• P (at least one xi is not divisible by p) = 1− p−s

• Probability that there is no prime which divides all xi is the
product of this expression over all primes:

P =
∏
p

(
1− p−s

)
=

1

ζ(s)
.



Two minute intro to complex numbers part 1

ζ(s) was studied first by Euler as a real function. Riemann was the
first to view it as a complex function.

Definition
Let i be an imaginary number with i2 = −1. Complex numbers are
expressions of the form a+ bi where a, b ∈ R. We call this set C.

• Let z = a+ bi. The real part of z is
Re(z) = a and the imaginary part is
Im(z) = b.

• View these as points in the complex
plane, i.e. (x, y) = (Re z, Im z).

• Magnitude of z is |z| =
√
a2 + b2

(distance from z to the origin)

Re z

Im z

3 + 2i

−i

i−4



Two minute intro to complex numbers part 2

• You can add, subtract, multiply, and divide complex numbers
• You can make a function whose input and output are complex

numbers, e.g. f(z) = z2

• f(2 + i) = (2 + i)2 = 22 + i2 + 2 ∗ 2 ∗ i = 3 + 4i

• Hard to graph because both domain and range are 2
dimensional

MathWorks



The complex zeta function

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1− p−s

)−1
Riemann described the complex zeta function in his 1859 paper
Über die Anzahl der Primzahlen unter einer gegebenen Grösse.

• ζ(s) converges for all s ∈ C with Re s > 1

• There is a meromorphic continuation of ζ(s) to the rest of C
(with a simple pole at s = 1)

ζ(s) =
Γ(1− s)

2πi

ˆ
C

(−z)s

ez − 1

dz

z

• ζ(s) satisfies a functional equation:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)



The Riemann Hypothesis

The functional equation ζ(s) = 2sπs−1 sin
(
πs
2

)
Γ(1− s)ζ(1− s)

relates values on opposite sides of the critical line Re z = 1/2:

Re z

Im z

It’s known that all* zeros of ζ(s) lie in the critical strip
0 < Re z < 1.



The Riemann hypothesis

Conjecture (Riemann hypothesis)

All nontrivial zeros of ζ(s) have real part 1/2.

• There are trivial zeroes at all negative even integers

• This is one of the most famous unsolved problems in all of
mathematics. If you can solve it, you’ll get $1 million and
probably a Fields medal.

• Why is this important?
• ζ(s) encodes lots of deep information about Z
• Meromorphic complex functions are largely defined by the

locations and orders of their zeros and poles.
• Knowing the zeros is important for computing contour

integrals. (more on this later)



Number Theory

• Number theory: branch of mathematics that studies the
integers, Z

• However, in order to understand Z we often have to work with
other mathematical objects:

• Q (rational numbers) and C (complex numbers)
• Finite fields Fq (modular arithmetic)
• Rings and fields of polynomials, e.g. Z[t], Fq(t)
• Geometric objects like algebraic curves

• Goal is to understand arithmetic in Z. A major part of this is
understanding how composite numbers break down into
primes.

• Another major part is understanding integer solutions to
equations like x2 − ny2 = 1



Prime numbers

• The first few prime numbers are
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . .

• Prime numbers seem to occur less frequently as the numbers
get bigger. Can we quantify this?

• Euclid, 3rd century BC: there are infinitely many primes
• Euler, 1737:

∑
p
1
p = 1

2 + 1
3 + 1

5 + 1
7 + . . . diverges

• Dirichlet, 1837: any arithmetic sequence (a+ nd)∞n=0 contains
infinitely many primes

• Hadamard and de la Vallée-Poussin, 1896: Prime Number
Theorem (with an assist from Riemann)

Theorem (PNT)

Let π(x) = # {p ∈ Z : p ≤ x} be the prime counting function. As
x→∞, π(x) ∼ x/ log x. That is,

lim
x→∞

π(x)

x/ log x
= 1.
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Proving the Prime Number Theorem

Instead of working with π(x) directly, we’ll use the von Mangoldt
function

Λ(n) =

{
log p if n = pk

0 otherwise

and the Chebyshev function

ψ(x) =
∑
n≤x

Λ(n).

The PNT is equivalent to proving that limx→∞
ψ(x)
x = 1.



Proving the Prime Number Theorem

Here’s where ζ(s) comes in: it turns out that

− d

ds
log ζ(s) =

∞∑
n=1

Λ(n)n−s.

Then you can do some analysis and prove the following equation:

ψ(x) = x−
∑
ρ

xρ

ρ
− log(2π)

summing over the zeros ρ of ζ(s). If you know where the ρ are,
you can prove that this is ψ(x) = x− (lower order terms).

Or compute a certain contour integral in the complex plane.
Again, need to know the zeros of ζ(s).



Proving the Prime Number Theorem

• Riemann stated his hypothesis in 1859. For decades
afterwards, mathematicians knew that proving the RH would
prove the PNT.

• 1896: Hadamard and de la Vallée-Poussin (independently)
proved that all nontrivial zeros of ζ(s) lie in the critical strip
0 < Re z < 1.

• This is weaker than the RH, but it’s enough to prove the PNT

• An even better estimate is π(x) =
´ t
2

1
log t dt.



Prime numbers post-PNT

• There are still many unanswered questions about the
distribution of primes in Z, e.g. twin prime conjecture

• For the past few decades, prime numbers (and number theory
in general) have become important because of their use in
crypto algorithms

• There are other zeta functions (and L-functions) for other
types of mathematical objects such as number fields, varieties,
representations. . .

• Extended/Generalized Riemann Hypothesis (ERH/GRH): RH
for other types of zeta functions

• Many number theory papers prove important results if the
GRH is true!



End

Further reading:

• J. Derbyshire, Prime Obsession: Bernhard Riemann and the
Greatest Unsolved Problem in Mathematics

• H.M. Edwards, Riemann’s Zeta Function


