Riemann's Zeta Function and the Prime Number Theorem

Dan Nichols
nichols@math.umass.edu
University of Massachusetts

Dec. 7, 2016

Let's begin with the Basel problem, first posed in 1644 by Mengoli. Find the sum of the following infinite series:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots
$$

Let's begin with the Basel problem, first posed in 1644 by Mengoli. Find the sum of the following infinite series:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots=\frac{\pi^{2}}{6}
$$

- First solved* by Euler in 1735

$$
\begin{aligned}
\sin (\pi x) & =\pi x-\frac{(\pi x)^{3}}{3!}+\frac{(\pi x)^{5}}{5!}+\ldots \\
\sin (\pi x) & =\pi x\left(1-x^{2}\right)\left(1-\frac{x^{2}}{4}\right)\left(1-\frac{x^{2}}{9}\right) \cdots \\
& =\pi x+\pi x^{3}\left(1+\frac{1}{4}+\frac{1}{9}+\ldots\right)+\pi x^{5}(\cdots)+\ldots
\end{aligned}
$$

Let's begin with the Basel problem, first posed in 1644 by Mengoli. Find the sum of the following infinite series:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots=\frac{\pi^{2}}{6}
$$

- First solved* by Euler in 1735

$$
\begin{aligned}
\sin (\pi x) & =\pi x-\frac{(\pi x)^{3}}{3!}+\frac{(\pi x)^{5}}{5!}+\ldots \\
\sin (\pi x) & =\pi x\left(1-x^{2}\right)\left(1-\frac{x^{2}}{4}\right)\left(1-\frac{x^{2}}{9}\right) \cdots \\
& =\pi x+\pi x^{3}\left(1+\frac{1}{4}+\frac{1}{9}+\ldots\right)+\pi x^{5}(\cdots)+\ldots
\end{aligned}
$$

- Euler's proof was incomplete; he assumed that a power series can be written as an infinite product of linear polynomials.
- It's actually true in this case, but not always
- There are about a dozen other crazy ways to prove this.

Intro

Riemann's zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

- This series converges for real numbers $s>1$, diverges for real numbers $s \leq 1$
- $s=1$ is the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$
- The Basel problem is really asking "what is the value of $\zeta(2)$?" complex function

The Euler product formula

A prime number is a natural number whose only divisors are 1 and itself.

Here's the simplest connection between the zeta function and prime numbers:

$$
\begin{aligned}
& \prod_{p}\left(\frac{1}{1-p^{-s}}\right)=\prod_{p}\left(\sum_{k=0}^{\infty}\left(p^{-s}\right)^{k}\right)=\prod_{p}\left(\sum_{k=0}^{\infty}\left(p^{k}\right)^{-s}\right) \\
= & \left(1+2^{-s}+\left(2^{2}\right)^{-s}+\ldots\right)\left(1+3^{-s}+\left(3^{2}\right)^{-s}+\ldots\right) \cdots \\
= & 1^{-s}+2^{-s}+\left(2^{2}\right)^{-s}+5^{-s}+(2 \cdot 3)^{-s}+7^{-s}+\left(2^{3}\right)^{-s}+\ldots \\
= & \sum_{n=1}^{\infty} \frac{1}{n^{s}}=\zeta(s) .
\end{aligned}
$$

An application of the Euler product

Theorem

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ be a set of s randomly chosen integers.
Let P be the probability that $\operatorname{gcd}(X)>1$. Then $P=1 / \zeta(s)$.

- Let p be a prime. $P\left(x_{i}\right.$ is divisible by $\left.p\right)=1 / p$.
- $P(s$ random numbers are all divisible by $p)=(1 / p)^{s}$
- $P\left(\right.$ at least one x_{i} is not divisible by $\left.p\right)=1-p^{-s}$
- Probability that there is no prime which divides all x_{i} is the product of this expression over all primes:

$$
\begin{aligned}
P & =\prod_{p}\left(1-p^{-s}\right) \\
& =\frac{1}{\zeta(s)} .
\end{aligned}
$$

Two minute intro to complex numbers part 1

$\zeta(s)$ was studied first by Euler as a real function. Riemann was the first to view it as a complex function.

Definition

Let i be an imaginary number with $i^{2}=-1$. Complex numbers are expressions of the form $a+b i$ where $a, b \in \mathbb{R}$. We call this set \mathbb{C}.

- Let $z=a+b i$. The real part of z is $\operatorname{Re}(z)=a$ and the imaginary part is $\operatorname{Im}(z)=b$.
- View these as points in the complex plane, i.e. $(x, y)=(\operatorname{Re} z, \operatorname{Im} z)$.
- Magnitude of z is $|z|=\sqrt{a^{2}+b^{2}}$ (distance from z to the origin)

Two minute intro to complex numbers part 2

- You can add, subtract, multiply, and divide complex numbers
- You can make a function whose input and output are complex numbers, e.g. $f(z)=z^{2}$
- $f(2+i)=(2+i)^{2}=2^{2}+i^{2}+2 * 2 * i=3+4 i$
- Hard to graph because both domain and range are 2 dimensional

The complex zeta function

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-p^{-s}\right)^{-1}
$$

Riemann described the complex zeta function in his 1859 paper Über die Anzahl der Primzahlen unter einer gegebenen Grösse.

- $\zeta(s)$ converges for all $s \in \mathbb{C}$ with $\operatorname{Re} s>1$
- There is a meromorphic continuation of $\zeta(s)$ to the rest of \mathbb{C} (with a simple pole at $s=1$)

$$
\zeta(s)=\frac{\Gamma(1-s)}{2 \pi i} \int_{C} \frac{(-z)^{s}}{e^{z}-1} \frac{d z}{z}
$$

- $\zeta(s)$ satisfies a functional equation:

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

The Riemann Hypothesis

The functional equation $\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$ relates values on opposite sides of the critical line $\operatorname{Re} z=1 / 2$:

It's known that all* zeros of $\zeta(s)$ lie in the critical strip $0<\operatorname{Re} z<1$.

The Riemann hypothesis

Conjecture (Riemann hypothesis)

All nontrivial zeros of $\zeta(s)$ have real part $1 / 2$.

- There are trivial zeroes at all negative even integers
- This is one of the most famous unsolved problems in all of mathematics. If you can solve it, you'll get $\$ 1$ million and probably a Fields medal.
- Why is this important?
- $\zeta(s)$ encodes lots of deep information about \mathbb{Z}
- Meromorphic complex functions are largely defined by the locations and orders of their zeros and poles.
- Knowing the zeros is important for computing contour integrals. (more on this later)

Number Theory

- Number theory: branch of mathematics that studies the integers, \mathbb{Z}
- However, in order to understand \mathbb{Z} we often have to work with other mathematical objects:
- \mathbb{Q} (rational numbers) and \mathbb{C} (complex numbers)
- Finite fields \mathbb{F}_{q} (modular arithmetic)
- Rings and fields of polynomials, e.g. $\mathbb{Z}[t], \mathbb{F}_{q}(t)$
- Geometric objects like algebraic curves
- Goal is to understand arithmetic in \mathbb{Z}. A major part of this is understanding how composite numbers break down into primes.
- Another major part is understanding integer solutions to equations like $x^{2}-n y^{2}=1$

Prime numbers

- The first few prime numbers are $2,3,5,7,11,13,17,19,23,29,31,37, \ldots$
- Prime numbers seem to occur less frequently as the numbers get bigger. Can we quantify this?

Prime numbers

- The first few prime numbers are $2,3,5,7,11,13,17,19,23,29,31,37, \ldots$
- Prime numbers seem to occur less frequently as the numbers get bigger. Can we quantify this?
- Euclid, 3rd century BC: there are infinitely many primes

Prime numbers

- The first few prime numbers are $2,3,5,7,11,13,17,19,23,29,31,37, \ldots$
- Prime numbers seem to occur less frequently as the numbers get bigger. Can we quantify this?
- Euclid, 3rd century BC: there are infinitely many primes
- Euler, 1737: $\sum_{p} \frac{1}{p}=\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots$ diverges

Prime numbers

- The first few prime numbers are $2,3,5,7,11,13,17,19,23,29,31,37, \ldots$
- Prime numbers seem to occur less frequently as the numbers get bigger. Can we quantify this?
- Euclid, 3rd century BC: there are infinitely many primes
- Euler, 1737: $\sum_{p} \frac{1}{p}=\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots$ diverges
- Dirichlet, 1837: any arithmetic sequence $(a+n d)_{n=0}^{\infty}$ contains infinitely many primes

Prime numbers

- The first few prime numbers are $2,3,5,7,11,13,17,19,23,29,31,37, \ldots$
- Prime numbers seem to occur less frequently as the numbers get bigger. Can we quantify this?
- Euclid, 3rd century BC: there are infinitely many primes
- Euler, 1737: $\sum_{p} \frac{1}{p}=\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots$ diverges
- Dirichlet, 1837: any arithmetic sequence $(a+n d)_{n=0}^{\infty}$ contains infinitely many primes
- Hadamard and de la Vallée-Poussin, 1896: Prime Number Theorem (with an assist from Riemann)

Theorem (PNT)

Let $\pi(x)=\#\{p \in \mathbb{Z}: p \leq x\}$ be the prime counting function. As $x \rightarrow \infty, \pi(x) \sim x / \log x$. That is,

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

Proving the Prime Number Theorem

Instead of working with $\pi(x)$ directly, we'll use the von Mangoldt function

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \\ 0 & \text { otherwise }\end{cases}
$$

and the Chebyshev function

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)
$$

The PNT is equivalent to proving that $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1$.

Proving the Prime Number Theorem

Here's where $\zeta(s)$ comes in: it turns out that

$$
-\frac{d}{d s} \log \zeta(s)=\sum_{n=1}^{\infty} \Lambda(n) n^{-s}
$$

Then you can do some analysis and prove the following equation:

$$
\psi(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\log (2 \pi)
$$

summing over the zeros ρ of $\zeta(s)$. If you know where the ρ are, you can prove that this is $\psi(x)=x$ - (lower order terms).

Or compute a certain contour integral in the complex plane. Again, need to know the zeros of $\zeta(s)$.

Proving the Prime Number Theorem

- Riemann stated his hypothesis in 1859. For decades afterwards, mathematicians knew that proving the RH would prove the PNT.
- 1896: Hadamard and de la Vallée-Poussin (independently) proved that all nontrivial zeros of $\zeta(s)$ lie in the critical strip $0<\operatorname{Re} z<1$.
- This is weaker than the RH, but it's enough to prove the PNT
- An even better estimate is $\pi(x)=\int_{2}^{t} \frac{1}{\log t} d t$.

Prime numbers post-PNT

- There are still many unanswered questions about the distribution of primes in \mathbb{Z}, e.g. twin prime conjecture
- For the past few decades, prime numbers (and number theory in general) have become important because of their use in crypto algorithms
- There are other zeta functions (and L-functions) for other types of mathematical objects such as number fields, varieties, representations. . .
- Extended/Generalized Riemann Hypothesis (ERH/GRH): RH for other types of zeta functions
- Many number theory papers prove important results if the GRH is true!

End

Further reading:

- J. Derbyshire, Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics
- H.M. Edwards, Riemann's Zeta Function

