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Intro

Let's begin with the Basel problem, first posed in 1644 by Mengoli.
Find the sum of the following infinite series:
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e Euler's proof was incomplete; he assumed that a power series
can be written as an infinite product of linear polynomials.
e |t's actually true in this case, but not always

e There are about a dozen other crazy ways to prove this.



Intro

Riemann’'s zeta function:

1
() =) —
n=1 n

e This series converges for real numbers s > 1, diverges for real
numbers s <1

oco 1

e 5= 1is the harmonic series " -

e The Basel problem is really asking “what is the value of
¢(2)?" complex function



The Euler product formula
A prime number is a natural number whose only divisors are 1 and
itself.

Here's the simplest connection between the zeta function and
prime numbers:
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An application of the Euler product

Theorem
Let X = {x1,22,...,x5} be a set of s randomly chosen integers.
Let P be the probability that gcd(X) > 1. Then P = 1/((s).

e Let p be a prime. P(x; is divisible by p) = 1/p.
e P(s random numbers are all divisible by p) = (1/p)*

e P(at least one x; is not divisible by p) =1 —p~

e Probability that there is no prime which divides all z; is the
product of this expression over all primes:

P:H(l—pfs)
1

¢()



Two minute intro to complex numbers part 1

((s) was studied first by Euler as a real function. Riemann was the
first to view it as a complex function.

Definition
Let 4 be an imaginary number with i> = —1. Complex numbers are
expressions of the form a + bi where a,b € R. We call this set C.

e Let z =a + bi. The real part of z is

Im 2
Re(z) = a and the imaginary part is
Im(z) = b. 3H2i
e View these as points in the complex L '
plane, i.e. (z,y) = (Rez,Imz). P l Re »
e Magnitude of z is |z| = Va2 + b2 %
(distance from z to the origin) 1




Two minute intro to complex numbers part 2

e You can add, subtract, multiply, and divide complex numbers

e You can make a function whose input and output are complex
numbers, e.g. f(z) = 22

o fF2+i)=(2+9)2 =22+ +2x2%i=3+4i
e Hard to graph because both domain and range are 2
dimensional

MathWorks



The complex zeta function

o] 1 )
o)
=2 1=
n=1 D
Riemann described the complex zeta function in his 1859 paper
Uber die Anzahl der Primzahlen unter einer gegebenen Grésse.

e ((s) converges for all s € C with Res > 1

e There is a meromorphic continuation of {(s) to the rest of C
(with a simple pole at s = 1)

(=R [ o

21 e —1 z

e ((s) satisfies a functional equation:

¢(s) = 2°7° Lsin (%) I(1 - s)¢(1—s)



The Riemann Hypothesis

The functional equation ((s) = 2575 !sin () ['(1 — s)¢(1 — s)
relates values on opposite sides of the critical line Rez = 1/2:

Im z

Rez

It's known that all* zeros of ((s) lie in the critical strip
0<Rez<1.



The Riemann hypothesis

Conjecture (Riemann hypothesis)

All nontrivial zeros of ((s) have real part 1/2.

e There are trivial zeroes at all negative even integers

e This is one of the most famous unsolved problems in all of
mathematics. If you can solve it, you'll get $1 million and
probably a Fields medal.

e Why is this important?

e ((s) encodes lots of deep information about Z

e Meromorphic complex functions are largely defined by the
locations and orders of their zeros and poles.

e Knowing the zeros is important for computing contour
integrals. (more on this later)



Number Theory

e Number theory: branch of mathematics that studies the
integers, Z

e However, in order to understand Z we often have to work with
other mathematical objects:

e Q (rational numbers) and C (complex numbers)

e Finite fields IF, (modular arithmetic)

¢ Rings and fields of polynomials, e.g. Z[t], F,(¢)

o Geometric objects like algebraic curves

e Goal is to understand arithmetic in Z. A major part of this is

understanding how composite numbers break down into
primes.

e Another major part is understanding integer solutions to

equations like 22 —ny? =1



Prime numbers

e The first few prime numbers are
2,3,5,7,11,13,17,19,23,29,31,37,. ..

e Prime numbers seem to occur less frequently as the numbers
get bigger. Can we quantify this?



Prime numbers

e The first few prime numbers are
2,3,5,7,11,13,17,19,23,29,31,37,. ..

e Prime numbers seem to occur less frequently as the numbers
get bigger. Can we quantify this?

e Euclid, 3rd century BC: there are infinitely many primes



Prime numbers

The first few prime numbers are

2,3,5,7,11,13,17,19,23, 29, 31,37, ...

Prime numbers seem to occur less frequently as the numbers
get bigger. Can we quantify this?

Euclid, 3rd century BC: there are infinitely many primes
Euler, 1737: Zp% = % + % + % + % + ... diverges



Prime numbers

The first few prime numbers are
2,3,5,7,11,13,17,19,23,29,31,37,. ..

Prime numbers seem to occur less frequently as the numbers
get bigger. Can we quantify this?

Euclid, 3rd century BC: there are infinitely many primes

Euler, 1737: Zp% = % + % + % + % + ... diverges

Dirichlet, 1837: any arithmetic sequence (a + nd)22, contains
infinitely many primes



Prime numbers

e The first few prime numbers are
2,3,5,7,11,13,17,19,23,29,31,37,. ..

e Prime numbers seem to occur less frequently as the numbers
get bigger. Can we quantify this?

e Euclid, 3rd century BC: there are infinitely many primes

e Euler, 1737: Zp% =1i+14+1+1+.. diverges

e Dirichlet, 1837: any arithmetic sequence (a + nd);2, contains
infinitely many primes

e Hadamard and de la Vallée-Poussin, 1896: Prime Number
Theorem (with an assist from Riemann)

Theorem (PNT)

Let m(z) = #{p € Z : p < x} be the prime counting function. As
x — 00, (x) ~ x/logx. That is,

m(x)

im =
z—oo x/log x



Proving the Prime Number Theorem

Instead of working with 7(z) directly, we'll use the von Mangoldt

function .
[ logp ifn=p
A(n) = { 0 otherwise

and the Chebyshev function



Proving the Prime Number Theorem

Here's where ((s) comes in: it turns out that

—ilogc ZA n-°.

Then you can do some analysis and prove the following equation:

vla) =2 = 30 % ~log(2m)

p

summing over the zeros p of ((s). If you know where the p are,
you can prove that this is ¢)(x) = x — (lower order terms).

Or compute a certain contour integral in the complex plane.
Again, need to know the zeros of ((s).



Proving the Prime Number Theorem

e Riemann stated his hypothesis in 1859. For decades
afterwards, mathematicians knew that proving the RH would
prove the PNT.

e 1896: Hadamard and de la Vallée-Poussin (independently)
proved that all nontrivial zeros of ((s) lie in the critical strip
0 <Rez<1.
e This is weaker than the RH, but it's enough to prove the PNT

e An even better estimate is 7( f2 logt



Prime numbers post-PNT

e There are still many unanswered questions about the
distribution of primes in Z, e.g. twin prime conjecture

e For the past few decades, prime numbers (and number theory
in general) have become important because of their use in
crypto algorithms

e There are other zeta functions (and L-functions) for other
types of mathematical objects such as number fields, varieties,
representations. . .

e Extended/Generalized Riemann Hypothesis (ERH/GRH): RH
for other types of zeta functions

e Many number theory papers prove important results if the
GRH is true!



End

Further reading:

e J. Derbyshire, Prime Obsession: Bernhard Riemann and the
Greatest Unsolved Problem in Mathematics

e H.M. Edwards, Riemann’s Zeta Function



