
Public-key Cryptography and elliptic curves

Dan Nichols
nichols@math.umass.edu

University of Massachusetts

Oct. 14, 2015



Cryptography basics

Cryptography is the study of secure communications. Here are
some important terms:

• Alice wants to send a message (called the plaintext) to Bob.

• To make sure only the Bob can understand the message, she
encrypts it, transforming the plaintext into the ciphertext

• Bob can decrypt the ciphertext and reveal the plaintext, but
other people cannot.

• A cipher is an algorithm for performing encryption and/or
decryption



Symmetric cryptography

• In a symmetric cipher, the same key is used for both
encryption and decryption.

• Alice and Bob must both share the same key, and make sure
no one else has access to it.

• This is difficult – how do they exchange keys securely?



Symmetric cryptography

• Analogy: a locked safe. Both Alice and Bob have copies of
the key to open it. Each can leave messages there for the
other to find.



An easy example

Here’s a cipher used by Julius Caesar: to encrypt a message, shift
each letter of the alphabet forward by N letters.

• if N = 3, replace every letter with the letter three steps after
it in the alphabet.

• a → d, b → e, etc.
• ’cipher’ → ’flskhu’

• Decrypt by shifting each letter back N steps

• The secret key is N



An easy example

Why is this cipher so easy to break?

• The key space (number of possible keys) is small: only 26
possible keys

• You could easily break this cipher with a brute force attack:
try every key until you find the right one.

• The cipher does not hide all the statistical properties of the
message

• Check the frequency in which each letter appears. Compare to
the known frequencies of letters in English text. This is an
example of an analytic attack.



Symmetric Cryptography

• Today we have much stronger symmetric ciphers available
such as AES (Advanced Encryption Standard)

• Huge key space – brute force attacks are effectively impossible
• Carefully designed to prevent analytic attacks

• But all symmetric ciphers, no matter how strong, share some
of the same inherent weaknesses:

• Both parties must first communicate securely to share a secret
key, which requires an already secure channel.

• In a network of people, each pair (e.g. Alice, Bob) needs its
own shared key.

• With N people, that’s N(N − 1)/2 keys in total.



Public-key cryptography

• Public-key cryptography (or asymmetric cryptography) solves
these problems

• Basic idea: instead of Alice and Bob sharing a secret key, each
person has their own public key and their own private key

• Invented* in 1976 by Whitfeld Diffie, Martin Hellman, and
Ralph Merkle

• Invented years earlier by GCHQ (and probably NSA), but not
revealed to the public.



Public-key cryptography

Public-key cryptography outline:

1 Bob generates both a public key and a private key.
• He makes his public key visible to everyone but keeps his

private key secret

2 Alice encrypts a message using Bob’s public key, and sends it
to Bob

3 Bob can decrypt the message using his private key



Public-key cryptography

So anyone who wants to send Bob an encrypted message can do so
using Bob’s public key. But decrypting these messages requires
Bob’s private key, which only Bob has!

• No secure channel necessary. Alice can send Bob a message
without them sharing the same secret key.

• In a network, each person just needs their own public key and
private key.

• In a network of N people, this is N public keys and N private
keys in total.



Public-key cryptography

• Analogy: each person has their own locked mailbox with a
slot to accept incoming messages



How are public-key algorithms used?

• In practice, public-key cryptosystems are much slower and less
efficient compared to symmetric ciphers. Not a good way to
send large messages quickly.

• These days secure communication usually works like this:
• Use a public-key protocol to securely exchange symmetric keys

for a fast symmetric cipher such as AES.
• Then we use this symmetric cipher to actually exchange

messages.
• Best of both worlds!



How are public-key algorithms constructed?

• Based on mathematical trapdoor functions: easy
computations that are hard to reverse.

• More technically: a one-to-one function f where it’s easy to
compute y = f (x) but hard to compute x = f −1(y).

• Example: RSA (Rivest, Shamir, Adelman) is based on the
problem of factoring a huge integer into a product of prime
numbers

• If you have two large prime numbers, it’s easy to multiply
them together

• But if you have a huge number that you know is the product of
two primes, it is very hard to find out what those primes are!

• Another trapdoor is the discrete logarithm problem



Diffie-Hellman key exchange

• One fairly simple public-key scheme is Diffie-Hellman Key
Exchange (DH)

• Allows two people to securely generate a shared key without
anyone else knowing. This key can then be used to
communicate using a symmetric cipher.

• Before we can study this algorithm, we need a quick number
theory primer.



Modular arithmetic

We want to define a system of arithmetic that is ‘closed’ on a
finite set of numbers. For example, let’s use the set {0, 1, 2, 3, 4}
(first five numbers, starting from zero).

• Problem: when we add (or multiply), the numbers get too
big.

• 3 + 4 = 7 (outside the set)
• We want to be able to add and multiply anything and never

deal with numbers above 4.

• Solution: for numbers outside the set, we ‘wrap around’ and
consider only the remainder when divided by 5. This works for
both + and ×.

• Remember that when we divide a number by m, the
remainder is always between 0 and m − 1.



Modular arithmetic

• We say a ≡ b mod m (a and b are equivalent modulo m) if
m divides (b − a).

• Or equivalently, if the remainder of a÷m is the same as the
remainder of b ÷m.

• Examples:
• 10 ≡ 0 mod 5 because 5 divides 10− 0
• −12 ≡ 3 mod 5 because 5 divides −12− 3

• Suppose we want to add 3 + 4. Normally this would be 7,
which is outside our set. But 7 ≡ 2 mod 5, so we can say

3 + 4 ≡ 2 mod 5.

You can add and multiply the numbers 0, 1, 2, 3, 4 using this
rule, and the answer always stays within this set!



Modular arithmetic

Let’s look at the addition table and multiplication table modulo 5:

+ 0 1 2 3 4
0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1



The integers modulo m

• We call m the modulus.

• The set of numbers 0, 1, 2, . . . ,m − 1 together with these
rules for addition and multiplication is called Z/m, the ring of
integers modulo m.

• Modular arithmetic obeys nice algebraic rules, so it’s
consistent and coherent:

• If a ≡ b mod m and c ≡ d mod m, then
• ac ≡ bd mod m
• and a+ c ≡ b + d mod m



The integers modulo m: examples

• Z/14: (integers modulo 14):
• 8 + 10 ≡ 4 mod 14

because 8 + 10 = 18, and 18÷ 14 = 1 remainder 4.
• 5× 6 ≡ 2 mod 14

because 5× 6 = 30, and 30÷ 14 = 2 remainder 2.

• Z/32: (integers modulo 32)
• 11 + 30 ≡ 9 mod 32
• 10× 7 ≡ 6 mod 32

• Z/2147483647: (integers modulo 2,147,483,647)
• 235× 325284906 ≡ 1280025265



The integers modulo m: prime modulus

• The number we used in that last example is actually a prime
number: 2,147,483,647

• This very useful number is 231 − 1, the largest number you can
store on a computer using 32 bits.

• If p is a prime number, Z/p has an important property: every
number modulo p has an inverse

• For every a in Z/p, there’s some a−1 such that a× a−1 ≡ 1
mod p

• For example, in Z/7, we have 2× 4 ≡ 1 mod 7, so the
inverse of 2 is 2−1 = 4.

• This means you can ‘divide’ by any number: a÷ b = ab−1

• But if m is not prime, there will be some numbers in Z/m
that don’t have a multiplicative inverse.

• For example, when m = 6, there’s no inverse of 2 mod 6.

• For a prime number p, we call Z/p the finite field with p
elements, or Fp. Extremely important in number theory



Modular exponentiation

Since we can multiply things in Z/m, we can also raise a number
to an integer power.

• Computing 33 mod 7:
33 = 3× 3× 3 = 27 ≡ 6 mod 7

• Computing 45 mod 100:
45 = 4× 4× 4× 4× 4 = 1024 ≡ 24 mod 100



Modular exponentiation

Suppose we want to calculate 1132 mod 81.

• Simplest way: find 1132 (a 33-digit number), take the
remainder modulo 81

• Faster way:
• Start by calculating 112 = 121 ≡ 40 mod 81
• Then square that: 114 = (112)2 ≡ 402 = 1600 ≡ 61 mod 81
• Square it again: 118 = (114)2 ≡ 612 = 3721 ≡ 76 mod 81
• Eventually we get 1132 ≡ 58 mod 81

• There’s a way to do this for exponents that aren’t powers of 2
with only slightly more work. We never have to work with
numbers bigger than m2.

• So it’s very fast and easy for a computer to calculate
bc mod m.



The discrete logarithm

It’s easy to compute powers in Z/m. What about logarithms?

• In R (real numbers), it’s easy to calculate log x for any x > 0.
• y = log x is a continuous function, so it’s easy to find

approximate solutions using Newton’s method (for example)
• log2 5 ≈ 2.32192809 . . .

• What if we want to find logb a where a and b are integers
modulo m?

• That is, find an integer c such that bc ≡ a mod m.
• Example: in Z/31, log3 10 = 14 because 314 ≡ 10 mod 31.

• Is there any way to do it faster than just trying every possible
exponent until we find one that works?

• This is called the discrete logarithm problem. It’s
computationally hard, like finding the prime factors of a big
number.



The discrete logarithm

Each number in Z/31 appears as 3c for some c . But there’s no
easy way to tell when a particular value will appear.

c 3c mod 31

0 1
1 3
2 9
3 27
4 19
5 26
6 16
7 17
8 20
9 29

10 25

c 3c mod 31

11 13
12 8
13 24
14 10
15 30
16 28
17 22
18 4
19 12
20 5
21 15

c 3c mod 31

22 14
23 11
24 2
25 6
26 18
27 23
28 7
29 21
30 1
31 3



The discrete logarithm

Kind of like a teleporter maze. . .

If you keep multiplying by b, eventually you’ll hit every integer
mod m:

b, b2, b3, b4, . . . , bm−2, bm−1

But you don’t know in what order you’ll see these numbers.



Diffie-Hellman key exchange

• Suppose Alice and Bob want to communicate using a
symmetric cryptosystem like AES.

• In order to do this, they need to share a symmetric key
without letting anyone else know it.

• Ideally they should be able to simultaneously create the key
without sharing private information over an unsecured
channel. This is called key exchange.

• Diffie-Hellman key exchange uses the difficulty of the discrete
logarithm problem to keep the key safe from attackers.



Diffie-Hellman key exchange

DH key exchange algorithm:

• Alice and Bob choose a large prime number p and a special
number g in Z/p. These numbers will be shared publicly.

• Alice chooses a random integer a modulo p to be her private
key. She calculates A = ga mod p, which is her public key.

• Bob chooses a random integer b modulo p to be his private
key. He calculates B = gb mod p, which is his public key.

• Alice and Bob both publish their public keys so everyone can
see them. They keep their private keys hidden.

Only Alice knows
a

Everyone knows
p, g ,A,B

Only Bob knows
b



Diffie-Hellman key exchange

Only Alice knows
a

Everyone knows
p, g , A, B

Only Bob knows
b

Now it’s time to create a shared secret symmetric key.

• Alice calculates k = Ba ≡ (gb)a ≡ gab mod m

• Bob calculates k = Ab ≡ (ga)b ≡ gab mod m

• Now Alice and Bob both know k = gab, which they can use
as a shared secret key

• For a third person to compute k , he would have to find either
a or b, which are the base-g logarithms of A and B modulo p.



A toy example

• p = 29, g = 10

• Alice chooses a = 6 for her private key. She calculates
A = 106 ≡ 22 mod 29 for her public key

• Bob chooses b = 21 for his private key. He calculates
B = 1021 ≡ 12 mod 29 for his public key

• Alice computes k = Ba ≡ 126 ≡ 28 mod 29

• Bob computes k = Ab ≡ 2221 ≡ 28 mod 29

• The shared secret key is k = 28.



Solving the discrete logarithm problem

• In the real world, p is probably a 1024-bit number (about 308
digits!)

• Brute force attack: try all 21024 possibilities.
• would take many, many years even for a supercomputer

• But there are some clever algorithms which speed things up. . .
• Pollard rho
• Baby-step giant-step
• Pollard Kangaroo

• These algorithms have running time O(
√
p). (Birthday

paradox)
• Better than brute force; equivalent to trying 2512 numbers

instead of 21024.
• Still slow



Discrete log algorithms: index calculus

• There’s a much better algorithm to find logarithms in Z/m
called index calculus.

• Uses the fact that many integers modulo m are products of
small primes. (smooth numbers)

• Factor some of these integers, create a system of linear
equations based on this

• Solve the system, use the solution to find the logarithm
• Much more complicated than Pollard rho, but faster

• The better the algorithms that attack a cryptosystem, the
larger the key we need to remain secure.

• Index calculus is such a strong attack that it would force us to
use very big keys (large key space)

• As an alternative, we can define a cryptosystem using a
different type of discrete log that’s not vulnerable to index
calculus. . .



What is an elliptic curve?

An elliptic curve is a curve in R2 defined by an equation of the
form y2 = x3 + ax + b for some constants a and b.



Defining a group

A group is a set of things (like numbers), together with an
operation (like addition), such that:

1 If you add any two elements of the group, the sum is an
element of the group

2 The operation is associative, meaning
a + (b + c) = (a + b) + c

• Sometimes (but not always) the operation is commutative
also: a + b = b + a

3 There is an identity element e. Any element plus the
identity is itself

4 Every element has an inverse. If you add an element and its
inverse, you get the identity: a +−a = e.



The integers as a group

One example of a group: the set of all integers
Z = {. . . ,−2,−1, 0, 1, 2, . . .} with addition as the operation.

• for any two integers a and b, a + b is also an integer

• the identity is 0. For any integer a, a + 0 = a

• The inverse of a is −a. Clearly a + (−a) = 0.

• This is an infinite group

• But it’s not very interesting



Examples of finite groups

Some other examples:

• The integers modulo m under addition form a group

• The integers modulo m under multiplication form a group, if
you take out “bad elements” (like 0) that don’t have inverses.

• When m is prime, we only have to take out 0 because every
other number has an inverse.

• Permutation groups: a set of all permutations
(rearrangements) of a set of things, with function composition
as the group operation

• Symmetry groups of geometric objects

We can define a version of the discrete log problem in any finite
cyclic group.



Group structure of an elliptic curve

We can create a group using the set of rational points on an
elliptic curve, if we choose the appropriate group operation.

• Let G be the set of pairs of rational numbers (x , y) which
satisfy y2 = x3 + ax + b.

• We want to define a group on this set. We need:
1 an operation + such that for any two elements P,Q in G ,

P + Q is also in G .
• must be associative, i.e. P + (Q + R) = (P + Q) + R

2 an identity element I such that P + I = P for all P in G
3 an inverse −P for each element P, such that P +−P = I .

• How do we do this?



Elliptic curve group operation

• To add P + Q:
• Draw the line PQ
• PQ intersects the curve

at exactly 3 points*
• Define P + Q to be the

reflection across the
x-axis of the third
intersection point (besides
P and Q).

• Easy to prove the following:
• P + Q is always rational,

so P + Q is in G
• + is associative (and

commutative)

• To add P + P, draw the
tangent to the curve at P

x

y

P

Q

P + Q

P

P + P



Wait a minute...

Two questions:

1 What happens if you add two points with the same x
coordinate?

• PQ is a vertical line
• Only intersects the curve at P and Q – there’s no third point!

2 What is the identity element?
• We need some point I such that for every point P on the

curve, P + I = P and P +−P = I .

To answer these questions, we need to add an extra imaginary
point to the curve.



∞

Let’s add one more point to this group: ∞, the point at infinity.

• Think of this as a magical point that exists infinitely far above
(and/or below) the curve

• Think of a vertical line PQ as passing through three points:
P,Q on the curve and ∞.

• ∞ is the identity element
• To add P +∞, draw a vertical line through P. The line P∞

intersects the curve directly above or below P, so
P +∞ = −(−P) = P.

• The inverse of P is its reflection across the x-axis, −P.
• The line P(−P) intersects the curve at P,−P, and∞, so

P +−P =∞.

Now we have an actual group operation on the elliptic curve! The
group of rational points on the curve E is called E (Q).



Elliptic curve group operation: identity and inverse

The identity element is ∞
• P +∞ = P

• P +−P =∞

• Q +∞ = Q

• Q +−Q =∞

x

y
∞

P

−P

−Q

Q



Elliptic curve group operation: formula

Let E be an elliptic curve with equation y2 = x3 + ax + b and let
P(x1, y1) and Q(x2, y2) be points on E with x1 6= x2.

• If P 6= Q, let s = y2−y1
x2−x1

• If P = Q, let s =
3x21+a
2y1

• Let x3 = s2 − x1 − x2 and let y3 = y1 − s(x1 − x3)

• Then (x3, y3) is the third intersection point of E and PQ

• Therefore P + Q = (x3,−y3).

So you don’t have to actually draw lines on a graph to add points.
You can just use this formula.



Elliptic curves modulo p

For cryptography, we need to work in a finite set, not all the
rational numbers

• Consider the integer pairs (x , y) with 0 ≤ x , y < p which
satisfy the equation y2 ≡ x3 + ax + b mod p

• Example: y2 ≡ x3 + x + 6 mod 7
• (4, 2) is a solution because 22 ≡ 43 + 4 + 6 ≡ 4 mod 7

• The group operation still works. (Use the formula from the
previous slide)

• The group of points on E modulo p is called E (Fp).
• This is a finite cyclic group
• Hasse’s theorem: there are (roughly) p points on the curve

modulo p.



The Elliptic Curve Discrete Log Problem

• If you have a number n and a point P on the curve, it’s easy
to add P to itself n times and find the point nP

• But, if you have P and an arbitrary point Q, how do you find
a number n such that P added to itself n times is Q?

• If you keep adding P you’ll eventually hit every point on the
curve, but in an unpredictable order.

• This is the same thing as the discrete log problem, but in a
different group: E (Fp) instead of (Z/p)×.

• Takes a long time to solve, even with computers

• ECDHE is a version of Diffie-Helman that uses the elliptic
curve version of the discrete logarithm problem.



Elliptic Curve Diffie-Hellman

Alice and Bob want to securely generate a shared secret key

• They agree on an elliptic curve E , a prime p, and a point P
on E . These things are all shared publicly.

• Alice chooses a random positive integer a to be her private
key. She adds P to itself a times to get a point A = aP on E .
This is her public key.

• Bob chooses a random positive integer b to be his private key.
He adds P to itself b times to get a point B = bP on E . This
is his public key.

• Alice and Bob publish their public keys, but keep their private
keys secret.



Elliptic Curve Diffie-Hellman

• Alice adds B to itself a times, getting k = a(bP) = (ab)P.

• Bob adds A to itself b times, getting k = b(aP) = (ab)P.

• Now Alice and Bob both know k = (ab)P, which they can use
as a shared secret key.

• For a third person to find k , they would have to compute a or
b, i.e. the discrete log of A or B in E (Fp).



Why use ECC?

• Some discrete log algorithms work in any group, including
E (Fp): Pollard rho, Kangaroo, etc

• But index calculus does NOT work!
• the elliptic curve group is too ‘strange’. Index calculus relies

on using information about Z (prime factorization)

• So the best known attacks are of the Rho/Kangaroo/BSGS
type, which are much slower

• Same security level with much smaller keys!



Elliptic curve cryptography

However. . .

• Like any cryptosystem, someone may discover a new, much
better method of attack

• Particular elliptic curves may have hidden weaknesses
• Some people don’t trust NIST standards for this reason (NSA

backdoor?)
• Both number theorists and terrifyingly Orwellian government

agencies are VERY interested in studying elliptic curves.

• Quantum computing / Shor’s algorithm

Nevertheless, ECC has become an extremely popular public-key
paradigm in the last 2 decades.



ECDHE in online communication protocols

TLS, HTTPS



ECDSA

ECDSA (digital signature algorithm) is used in:

Bitcoin (blockchain) iMessage

PS3 (oops) Android



Summary

• Public-key cryptography allows people to communicate
securely without sharing the same key

• Public-key algorithms are based on hard (usually
number-theoretic) mathematical problems

• The discrete logarithm problem is used in cryptosystems such
as Diffie-Hellman

• Elliptic curve cryptography uses discrete logarithms in an
elliptic curve group E (Fp) to provide even better security



Thanks!

Further reading:

• The Code Book by Simon Singh
• Non-technical history of cryptography from antiquity to the

present day

• Understanding Cryptography by C. Paar, J. Pelzl
• Excellent textbook on modern crypto algorithms. Written for

engineers, explains all the required math.

• Bruce Schneier’s blog: schneier.com

schneier.com

	What is Public-key Cryptography?
	Definitions
	Symmetric Cryptography
	Public-key cryptography

	Discrete Logarithms
	Modular arithmetic
	Diffie-Hellman Key Exchange
	Solving the discrete logarithm

	Elliptic Curve Cryptography
	Basics of elliptic curves
	Group Structure
	Elliptic Curve Cryptography
	Advantages of ECC
	Examples

	Summary

