Analogues of the 3x + 1 Problem in Polynomial Rings of Characteristic 2 Supplemental Document

Daniel Nichols

Abstract

This document contains additional proof details which were left out of the main paper for clarity and brevity. These are mostly straightforward calculations.

1 Terras' theorem in $\mathbb{F}_2[t]$

1.1 The map Φ_m

Let $\Phi_m : \mathbb{F}_2[t]/t^N \to \{0,1\}^N$ be defined as the function which maps each element $f \in \mathbb{F}_2[t]$ of degree less than N to the first N terms of its parity sequence.

Lemma 1.1. The map Φ_m described above is a set bijection. That is, every sequence $\{p_0, p_1, \ldots, p_{N-1}\}$ with $p_i \in \{0, 1\}$ is the first N terms of the parity sequence of a unique polynomial $f \in \mathbb{F}_2[t]$ with deg f < N. Specifically, the parity sequence determines the initial polynomial f and its N-th iterate $T^N(f)$ as follows, up to choice of q_N :

$$f = g_{N-1} + t^N q_N, \qquad \deg g_{N-1} < N$$
$$T^N(f) = h_{N-1} + m^{s(N)} q_N, \qquad \deg h_{N-1} < ds(N)$$

where $d = \deg m$ and $s(N) = \sum_{i=0}^{N-1} p_i$. Therefore, parity sequences of polynomials in $\mathbb{F}_2[t]$ of degree < N are distributed uniformly in $\{0,1\}^N$.

In the paper we prove this lemma by induction on N. When we come to the inductive step, there are four cases to consider, depending on the values of $h_{N-1}(0)$ and p_N in $\{0, 1\}$. Here we give the full proof for all four cases.

Case 1: $h_{N-1}(0) = 0$, $p_N = 0$. That is, the *N*-th term of the trajectory is 'even' and q_N is also even. Let $q_N = tq_{N+1}$. Then the next term is

$$f_{N+1} = \frac{f_N}{t} = \frac{h_{N-1} + m^{s(N)}q_N}{t}$$
$$= \frac{h_{N-1}}{t} + m^{s(N)}q_{N+1}$$

We can rewrite the initial polynomial as

$$f = g_{N-1} + t^{N+1} q_{N+1}$$

Since deg $h_{N-1}/t < s(N)$ deg m and deg $g_{N-1} < N+1$, the theorem holds in this case.

Case 2: $h_{N-1}(0) = 0$, $p_N = 1$. That is, the *N*-th term of the trajectory is odd and q_N is also odd. Let $q_N = 1 + tq_{N+1}$. Then the next term is

$$f_{N+1} = \frac{m \left[h_{N-1} + m^{s(N)} q_N \right] + 1}{t}$$
$$= \frac{m h_{N-1} + m^{s(N+1)} + 1}{t} + m^{s(N+1)} q_{N+1}$$

Let $h_N = \frac{mh_{N-1} + m^{s(N+1)} + 1}{t}$. Since deg $h_{N-1} < 2s(N)$, we have deg $h_N < (\deg m)s(N+1)$ as required. We rewrite the initial polynomial as

$$f = g_{N-1} + t^N (tq_{N+1} + 1)$$

= $(g_{N-1} + t^N) + t^{N+1}q_{N+1}.$

Clearly $\deg(g_{N-1} + t^N) < N + 1$, so the theorem holds in this case.

Case 3: $h_{N-1}(0) = 1$, $p_N = 0$. That is, the N-th term of the trajectory is even and q_N is odd. Let $q_N = 1 + tq_{N+1}$. Then the next term is

$$f_{N+1} = \frac{h_{N-1} + m^{s(N)}q_N}{t}$$
$$= \frac{h_{N-1} + m^{s(N)}}{t} + m^{s(N+1)}q_{N+1}$$

Let $h_N = (h_{N-1} + m^X)/t$. Since deg $h_{N-1} < 2s(N+1)$, we have deg $h_N < s(N+1)$ deg m as required. Next we rewrite the initial polynomial as

$$f = g_{N-1} + t^N q_N$$

= $g_{N-1} + t^N + t^{N+1} q_{N+1}$.

And we know $g_{N-1} + t^N$, has degree less than N + 1, so the theorem holds in this case.

Case 4: $h_{N-1}(1) = 1$, $p_N = 1$. That is, the *N*-th term of the trajectory is odd and q_N is even. Let $q_N = tq_{N+1}$. Then the next term is

$$f_{N+1} = \frac{m \left[h_{N-1} + m^{s(N)} q_N \right] + 1}{t}$$
$$= \frac{m h_{N-1} + 1}{t} + m^{s(N+1)} q_{N+1}$$

Let $h_N = (mh_{N-1} + 1)/t$. This has degree $\langle 2s(N+1) \rangle$ as required. Lastly, we rewrite the initial polynomial:

$$f = g_{N-1} + t^N q_N = g_{N-1} + t^{N+1} q_{N+1}$$

The theorem is satisfied because deg $g_{N-1} < N+1$.

1.2 Gambler's Ruin

In the paper, we describe how the problem of determining the probability that a polynomial $f \in \mathbb{F}_2[t]$ will have finite stopping time can be formulated as a version of the well-known "gambler's ruin" problem. We prove the following lemma.

Lemma 1.2. For k = 0, ..., N-1, let X_k be IID uniform Bernoulli variables and let P_d be defined

$$P_d = P\left(\exists N > 0 : \sum_{k=0}^{N-1} X_k < \frac{1}{d}N\right).$$

Then $P_1 = P_2 = 1$, and for d > 2, P_d is the unique real root of the polynomial $g_d(z) = z^d - 2z + 1$ lying inside the unit disk.

Here we present some additional details of the proof that were left out of the paper to save space.

1.2.1 Solving a linear recurrence

For d > 2, let $\lambda_1, \lambda_2, \ldots, \lambda_d$ be the *d* distinct complex roots of the polynomial $g_d(z) = z^2 - 2z + 1$. In the paper, we write the probability of ruin in this case as

$$P_d = \lim_{W \to \infty} P_{d,W} = \lim_{W \to \infty} \left(c_1 + c_2 + \ldots + c_d \right),$$

where c_j are the solutions of the following linear system:

$$\begin{bmatrix} \lambda_1^{-1} & \lambda_2^{-1} & \lambda_3^{-1} & \cdots & \lambda_d^{-1} \\ \lambda_1^W & \lambda_2^W & \lambda_3^W & \cdots & \lambda_d^W \\ \lambda_1^{W+1} & \lambda_2^{W+1} & \lambda_3^{W+1} & \cdots & \lambda_d^{W+1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^{W+d-1} & \lambda_2^{W+d-1} & \lambda_3^{W+d-1} & \cdots & \lambda_d^{W+d-1} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_d \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

This system can be solved analytically using Cramer's rule. Let A be the $d \times d$ matrix above and let b be the column vector on the right-hand side of the system. Using Cramer's rule, we write

$$U_0 = \sum_{i=1}^d c_i = \frac{\sum_{i=1}^d \det A_i}{\sum_{i=1}^d \lambda_i^{-1} A_{1,i}}$$
(1)

where A_i is the matrix formed by replacing the *i*-th column of A with b, and $A_{i,j}$ is the *i*, *j* cofactor of A.

Because b in this case is just the first standard basis vector, det $A_i = A_{1,i}$ for each $1 \le i \le d$. We compute $A_{1,1}$ as an example; the others follow the exact same pattern.

$$\det A_{1} = \det \begin{bmatrix} 1 & \lambda_{2}^{-1} & \lambda_{3}^{-1} & \cdots & \lambda_{d}^{-1} \\ 0 & \lambda_{2}^{W} & \lambda_{3}^{W} & \cdots & \lambda_{d}^{W} \\ 0 & \lambda_{2}^{W+1} & \lambda_{3}^{W+1} & \cdots & \lambda_{d}^{W+1} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & \lambda_{2}^{W+d-1} & \lambda_{3}^{W+d-1} & \cdots & \lambda_{d}^{W+d-1} \end{bmatrix}$$
$$= \det \begin{bmatrix} \lambda_{2}^{W} & \lambda_{3}^{W} & \cdots & \lambda_{d}^{W} \\ \lambda_{2}^{W+1} & \lambda_{3}^{W+1} & \cdots & \lambda_{d}^{W+1} \\ \vdots & \vdots & & \vdots \\ \lambda_{2}^{W+d-1} & \lambda_{3}^{W+d-1} & \cdots & \lambda_{d}^{W+d-1} \end{bmatrix}$$
$$= \prod_{j=2}^{d} \lambda_{j}^{W} \det \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \lambda_{2} & \lambda_{3} & \cdots & \lambda_{d} \\ \vdots & \vdots & & \vdots \\ \lambda_{2}^{d-1} & \lambda_{3}^{d-1} & \cdots & \lambda_{d}^{d-1} \end{bmatrix}.$$

The matrix in the last row above is a Vandermonde matrix with parameters $\lambda_2, \lambda_3, \ldots, \lambda_d$, so its determinant is $\prod_{2 \leq j < k \leq d} (\lambda_k - \lambda_j)$. More generally, for any $1 \leq i \leq d$, let B_i be the determinant of the $(d-1) \times (d-1)$ Vandermonde matrix with parameters $\lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_d$. Then

$$B_i = \prod_{\substack{1 \le j < k \le d \\ j, k \ne i}} (\lambda_k - \lambda_j)$$

And since $\prod_{j=1}^{d} \lambda_j = 1$, we can write

$$\det A_i = (-1)^{1+i} \prod_{\substack{1 \le j \le d \\ j \ne i}} \lambda_j^W B_i$$
$$= (-1)^{1+i} \lambda_i^{-W} B_i.$$

We can now rewrite equation (1) as follows:

$$U_0 = \frac{\sum_{i=1}^d (-1)^{1+i} \lambda_i^{-W} B_i}{\sum_{i=1}^d (-1)^{1+i} \lambda_i^{-W-1} B_i}.$$

This makes it clear that if there exists a root λ_1 of $g_d(z)$ with minimal absolute value, then $\lim_{W\to\infty} U_0 = \lambda_1$.

1.2.2 The roots of $g_d(z)$

Here we provide a fully detailed proof that for d > 2, $g_d(z) = z^d - 2z + 1$ has a unique root inside the unit disk, and that this root is real and positive. Using Descartes' rule of signs, we determine that there are two positive real roots of $g_d(z)$, one of which is z = 1. Since $g'_d(1) = d - 2 > 0$, we know that $g_d(1 - \epsilon) < 0$ for small positive epsilon. On the other hand, $g_d(1/2) = (1/2)^d > 0$, so the other real root must lie in the interval (1/2, 1).

Next, we use Rouche's theorem to prove that there is only one root within the unit circle. Let $f(z) = z^d$ and let h(z) = -2z + 1. For small positive ϵ , consider the circle $C_{\epsilon} = \{z \in \mathbb{C} : |z| = 1 - \epsilon\}$. The function f maps C_{ϵ} to a smaller circle $|z| = (1 - \epsilon)^d$. Define $m_f(\epsilon) = (1 - \epsilon)^d$. Then $|f(z)| = m_f(\epsilon)$ for all $z \in C_{\epsilon}$. The other function h maps C_{ϵ} to a circle of radius $2(1 - \epsilon)$ centered at z = 1. The point on this circle closest to the origin is the point $z = -1 + 2\epsilon$, with magnitude $|-1 + 2\epsilon| = 1 - 2\epsilon$. Define $m_h(\epsilon) = 1 - 2\epsilon$. Then for all $z \in C_{\epsilon}$, $|h(z)| \ge m_h(\epsilon)$. See Figure 1.

We claim that for small positive ϵ , $m_h(\epsilon) > m_f(\epsilon)$ and therefore that |h(z)| > |f(z)| for all $z \in C_{\epsilon}$. Notice that $m_h(0) = m_f(0) = 1$. Calculating the derivatives of the two functions, we see that $m'_h(0) = -2$ and $m'_f(0) = -d$. By continuity, since $m'_h(0) > m'_f(0)$, $m_h(\epsilon)$ must be greater than $m_f(\epsilon)$ for small positive values of epsilon. Since |h(z)| > |f(z)| for all $z \in C_{\epsilon}$,

 $g_d(z) = h(z) + f(z)$ must have the same number of roots within C_{ϵ} as h(z). The function h(z) = 1 - 2z has one root at z = 1/2. Therefore, for small positive ϵ , $g_d(z)$ has a unique root inside the circle $|z| = 1 - \epsilon$, which must be the previously mentioned real root lying in the interval (1/2, 1).

2 Terras' theorem in R_r

In the ring $R_r = \mathbb{F}_2[x,t]/(x^2 + tx + r(t))$, we once again formulate the probability that a randomly chosen polynomial has finite mx + 1 stopping time as a version of the gambler's ruin problem. We prove the following lemma.

Lemma 2.1. For d > 0, let P_d be defined

$$P_d = P\left(\exists N > 0 : \sum_{k=0}^{N-1} X_k < \frac{N}{d}\right)$$

where X_i are IID Bernoulli variables taking the value 1 with probability 1/4and 0 otherwise. If $d \leq 4$, then $P_d = 1$. If d > 4, then P_d is the unique root of $g_d(z) = z^d - 4z + 3$ inside the unit disk, which is real and lies in the interval (3/4, 1).

Here we present some additional details of the proof that were left out of the paper to save space.

2.1 Solving a recurrence relation

As in $\mathbb{F}_2[t]$, we first use a recurrence relation to solve the alternate version of the game which ends if the gambler reaches a value of W. We label U_k the probability of ruin under these conditions given a starting value of k. Clearly $U_k = -1$ for all k < 0 and $U_k = 0$ for all $k \ge W$. For other values of k, we have the following linear recurrence relation.

$$U_k = \frac{3}{4}U_{k-1} + \frac{1}{4}U_{k+d-1}$$

Our goal is to find the value of U_0 , representing the probability of ruin (depending on W) starting from a value of 0. If we then take the limit of this quantity as $W \to \infty$, we will learn the actual probability of ruin in a game with no upper limit.

The auxiliary polynomial for the recurrence is $g_d(z) = z^d - 4z + 3$, which is separable as long as $d \neq 4$. When d = 4 the root z = 1 has multiplicity 2, so we handle this case first. In this case, the solutions to the recurrence equation will take the form $U_k = c_1 + c_2k + c_3\lambda^k + c_4\bar{\lambda}^k$. Since we know that $U_{-1} = 1$ and $U_W = U_{W+1} = U_{W+2} = 0$, we can find the specific solution we need by solving the following linear system:

$$\begin{bmatrix} 1 & -1 & \lambda^{-1} & \bar{\lambda}^{-1} \\ 1 & W & \lambda^{W} & \bar{\lambda}^{W} \\ 1 & W+1 & \lambda^{W+1} & \bar{\lambda}^{W+1} \\ 1 & W+2 & \lambda^{W+2} & \bar{\lambda}^{W+2} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

The quantity we are seeking is then $U_0 = c_1 + c_3 + c_4$. We label the 4×4 matrix above A. Using Cramer's rule, we write

$$U_0 = c_1 + c_3 + c_4$$

= $\frac{\det A_1}{\det A} + \frac{\det A_3}{\det A} + \frac{\det A_4}{\det A}$
= $\frac{\det A_1 + \det A_3 + \det A_4}{\det A}$

where A_j is the determinant of A with the column j replaced by [1, 0, ..., 0]. Next, we expand the determinant of A in terms of the cofactors.

$$\det A = A_{1,1} - A_{1,2} + \lambda^{-1} A_{1,3} + \lambda^{-1} A_{1,4}.$$

For this linear system, because the right-hand vector b is just the first standard basis vector, the determinant of A with the j-th column replaced

by b is the same as the (1, j)-cofactor of A. That is, det $A_i = A_{1,i}$. This allows us to write

$$U_0 = \frac{A_{1,1} + A_{1,3} + A_{1,4}}{A_{1,1} - A_{1,2} + \lambda^{-1} A_{1,3} + \bar{\lambda}^{-1} A_{1,4}}.$$

We argue that $A_{1,1}$ dominates the other terms asymptotically as $W \to \infty$, and therefore that $P_4 = \lim_{W\to\infty} U_0 = 1$. We must express all four cofactors as functions of W.

$$\begin{split} A_{1,1} &= \begin{vmatrix} W & \lambda^W & \bar{\lambda}^W \\ W+1 & \lambda^{W+1} & \bar{\lambda}^{W+1} \\ W+2 & \lambda^{W+2} & \bar{\lambda}^{W+2} \end{vmatrix} = \lambda^W \bar{\lambda}^W \begin{vmatrix} W & 1 & 1 \\ W+1 & \lambda & \bar{\lambda} \\ W+2 & \lambda^2 & \bar{\lambda}^2 \end{vmatrix} \\ &= \lambda^W \bar{\lambda}^W \left(W \begin{vmatrix} \lambda & \bar{\lambda} \\ \lambda^2 & \bar{\lambda}^2 \end{vmatrix} - \begin{vmatrix} W+1 & \bar{\lambda} \\ W+2 & \bar{\lambda}^2 \end{vmatrix} + \begin{vmatrix} W+1 & \lambda \\ W+2 & \lambda^2 \end{vmatrix} \right) \\ &= \lambda^W \bar{\lambda}^W \left[W \left(\lambda \bar{\lambda}^2 - \lambda^2 \bar{\lambda} \right) - \left(W \bar{\lambda}^2 + \bar{\lambda}^2 - W \bar{\lambda} - 2 \bar{\lambda} \right) + \left(W \lambda^2 + \lambda^2 - W \lambda - 2 \lambda \right) \right] \\ &= \lambda^W \bar{\lambda}^W \left[W \left(\lambda \bar{\lambda}^2 - \lambda^2 \bar{\lambda} + \lambda^2 - \bar{\lambda}^2 + \bar{\lambda} - \lambda \right) + \lambda^2 - \bar{\lambda}^2 + 2 \bar{\lambda} - 2 \lambda \right] \\ &= A^W \bar{\lambda}^W \left[W \left(3 \bar{\lambda} - 3 \lambda - 2 \lambda - 3 + 2 \bar{\lambda} + 3 + \bar{\lambda} - \lambda \right) - 2 \lambda - 3 + 2 \bar{\lambda} + 3 + 2 \bar{\lambda} - 2 \lambda \right] \\ &= 6 (\bar{\lambda} - \lambda) W \, 3^W + 4 (\bar{\lambda} - \lambda) 3^W. \end{split}$$

$$A_{1,2} = - \begin{vmatrix} 1 & \lambda^{W} & \bar{\lambda}^{W} \\ 1 & \lambda^{W+1} & \bar{\lambda}^{W+1} \\ 1 & \lambda^{W+2} & \bar{\lambda}^{W+2} \end{vmatrix} = -\lambda^{W} \bar{\lambda}^{W} \begin{vmatrix} 1 & 1 & 1 \\ 1 & \lambda & \bar{\lambda} \\ 1 & \lambda^{2} & \bar{\lambda}^{2} \end{vmatrix}$$
$$= -3^{W} \left[(3\bar{\lambda} - 3\lambda) - (\bar{\lambda}^{2} - \bar{\lambda}) + (\lambda^{2} - \lambda) \right]$$
$$= -3^{W} \left[3\bar{\lambda} - 3\lambda + 3\bar{\lambda} + 3 - 3\lambda - 3 \right]$$
$$= -6(\bar{\lambda} - \lambda)3^{W}.$$

$$\begin{split} A_{1,3} &= \begin{vmatrix} 1 & W & \bar{\lambda}^{W} \\ 1 & W+1 & \bar{\lambda}^{W+1} \\ 1 & W+2 & \bar{\lambda}^{W+2} \end{vmatrix} = \bar{\lambda}^{W} \begin{vmatrix} 1 & W & 1 \\ 1 & W+1 & \bar{\lambda} \\ 1 & W+2 & \bar{\lambda}^{2} \end{vmatrix} \\ &= \bar{\lambda}^{W} \left(\begin{vmatrix} W+1 & \bar{\lambda} \\ W+2 & \bar{\lambda}^{2} \end{vmatrix} - W \begin{vmatrix} 1 & \bar{\lambda} \\ 1 & \bar{\lambda}^{2} \end{vmatrix} + \begin{vmatrix} 1 & W+1 \\ 1 & W+2 \end{vmatrix} \right) \\ &= \bar{\lambda}^{W} \left[(W\bar{\lambda}^{2} + \bar{\lambda}^{2} - W\bar{\lambda} - 2\bar{\lambda}) - W \left(\bar{\lambda}^{2} - W\bar{\lambda} \right) + (W+2 - W - 1) \right] \\ &= \bar{\lambda}^{W} \left(\bar{\lambda}^{2} - 2\bar{\lambda} + 1 \right) \\ &= \bar{\lambda}^{W} \left(-4\bar{\lambda} - 2 \right). \end{split}$$

$$\begin{aligned} A_{1,4} &= - \begin{vmatrix} 1 & W & \lambda^{W} \\ 1 & W+1 & \lambda^{W+1} \\ 1 & W+2 & \lambda^{W+2} \end{vmatrix} = -\lambda^{W} \begin{vmatrix} 1 & W & 1 \\ 1 & W+1 & \lambda \\ 1 & W+2 & \lambda^{2} \end{vmatrix} \\ &= -\lambda^{W} \left(\begin{vmatrix} W+1 & \lambda \\ W+2 & \lambda^{2} \end{vmatrix} - W \begin{vmatrix} 1 & \lambda \\ 1 & \lambda^{2} \end{vmatrix} + \begin{vmatrix} 1 & W+1 \\ 1 & W+2 \end{vmatrix} \right) \\ &= -\lambda^{W} \left[(W\lambda^{2} + \lambda^{2} - W\lambda - 2\lambda) - W \left(\lambda^{2} - W\lambda\right) + (W+2 - W - 1) \right] \\ &= -\lambda^{W} \left(\lambda^{2} - 2\lambda + 1\right) \\ &= -\lambda^{W} \left(-4\lambda - 2\right). \end{aligned}$$

To summarize, the asymptotic growth rates of the cofactors are:

$$\begin{split} A_{1,1} &\sim W \, 3^W \\ A_{1,2} &\sim 3^W \\ A_{1,3} &\sim \lambda^W \\ A_{1,4} &\sim \bar{\lambda}^W. \end{split}$$

It is clear that $A_{1,1}$ dominates the other cofactors as $W \to \infty$. Since the numerator and denominator have the same dominant term with the same coefficient, the probability of ruin in this case is

$$P_4 = \lim_{W \to \infty} P_{4,W} = 1.$$

For $d \neq 4$ we have gcd(f, f') = 1, so in this case the polynomial is separable. Therefore every solution must have the form $U_k = c_1\lambda_1^k + c_2\lambda_2^k + \dots + c_d\lambda_d^k$. The linear system we must solve is exactly the same as the one we found in $\mathbb{F}_2[t]$, except that the roots λ_i are now the roots of $z^d - 4z + 3 = 0$.

$$\begin{bmatrix} \lambda_1^{-1} & \lambda_2^{-1} & \lambda_3^{-1} & \cdots & \lambda_d^{-1} \\ \lambda_1^W & \lambda_2^W & \lambda_3^W & \cdots & \lambda_d^W \\ \lambda_1^{W+1} & \lambda_2^{W+1} & \lambda_3^{W+1} & \cdots & \lambda_d^{W+1} \\ \vdots & \vdots & \vdots & & \vdots \\ \lambda_1^{W+d-1} & \lambda_2^{W+d-1} & \lambda_3^{W+d-1} & \cdots & \lambda_d^{W+d-1} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_d \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

We can solve this system in the same way, using Cramer's rule and Vandermonde determinants. The product of all the roots is still the constant term of $g_d(z)$, which in this case is $\prod_{j=1}^d \lambda_j = 3$. So det $A_i =$

 $(-1)^{1+i} 3^W \lambda_i^{-W} B_i$, and the solution to the recurrence relation is

$$P_{d,W} = U_0 = \sum_{j=1}^d c_j$$

= $\sum_{j=1}^d \frac{\det A_j}{\det A}$
= $\frac{\sum_{j=1}^{d} (-1)^{1+j} 3^W \lambda_j^{-W} B_j}{\sum_{j=1}^d (-1)^{1+j} 3^W \lambda_j^{-W-1} B_j}$

where B_j are defined as Vandermonde determinants as before. Just as in $\mathbb{F}_2[t]$, if λ_1 is a real root with strictly smaller absolute value than all of the others, then the limit of the above quantity is

$$P_d = \lim_{W \to \infty} U_0 = \lambda_1.$$

2.2 Roots of $g_d(z)$

We will now examine the polynomial $g_d(z) = z^d - 4z + 3$ and show that when $d \neq 4$, such a root does in fact exist.

- d = 2: The polynomial $g_2(z) = z^2 4z + 3$ has roots at z = 1 and z = 3. Since z = 1 is the root with the smallest magnitude, the probability of ruin is 1.
- d = 3: We write $g_3(z) = z^3 4z + 3 = (z 1)(z^2 + z 3)$. Using the quadratic formula, we find that the roots of $z^2 + z 3$ are $z = -\frac{1}{2} \pm \frac{\sqrt{13}}{2}$, both of which have magnitude > 1. Since z = 1 is the root with the smallest magnitude, the probability of ruin is 1.
- d > 4: Using Descartes' rule of signs, we determine that there are two positive real roots of $g_d(z)$. We know that one of these is z = 1. Since $g'_d(1) = d-4 > 0$, we know that $g_d(1-\epsilon) < 0$ for small positive epsilon. On the other hand, $g_d(3/4) = (3/4)^d > 0$. Therefore, the other real root must lie in the interval (3/4, 1).

Next, we use Rouche's theorem to prove that there is only one root within the unit circle. Let $f(z) = z^d$ and let h(z) = -4z+3. For small positive ϵ , consider the circle $C_{\epsilon} = \{z \in \mathbb{C} : |z| = 1 - \epsilon\}$. The function f maps C_{ϵ} to a smaller circle $|z| = (1 - \epsilon)^d$. Define $m_f(\epsilon) = (1 - \epsilon)^d$. Then $|f(z)| = m_f(\epsilon)$ for all $z \in C_{\epsilon}$. The other function h maps C_{ϵ} to a circle of radius $4(1-\epsilon)$ centered at z = 3. The point on this circle closest to the origin is the point $z = -1+4\epsilon$, with magnitude $|-1+4\epsilon| = 1-4\epsilon$. Define $m_h(\epsilon) = 1-4\epsilon$. Then for all $z \in C_{\epsilon}$, $|h(z)| \ge m_h(\epsilon)$.

We claim that for small positive ϵ , $m_h(\epsilon) > m_f(\epsilon)$ and therefore that |h(z)| > |f(z)| for all $z \in C_{\epsilon}$. Notice that $m_h(0) = m_f(0) = 1$. Calculating the derivatives of the two functions, we see that $m'_h(0) = -4$ and $m'_f(0) = -d$. By continuity, since $m'_h(0) > m'_f(0)$, $m_h(\epsilon)$ must be greater than $m_f(\epsilon)$ for small positive values of epsilon.

Since |h(z)| > |f(z)| for all $z \in C_{\epsilon}$, $g_d(z) = h(z) + f(z)$ must have the same number of roots within C_{ϵ} as h(z). The function h(z) = 3 - 4z has one root at z = 3/4. Therefore, for small positive ϵ , $g_d(z)$ has a unique root inside the circle $|z| = 1 - \epsilon$, which must be the previously mentioned real root lying in the interval (3/4, 1). Since this root has the smallest magnitude among roots of $g_d(z)$, the value of this root is the probability of ruin P_d .