Analogues of the $3 x+1$ Problem in Polynomial Rings of Characteristic 2 Supplemental Document

Daniel Nichols

Abstract

This document contains additional proof details which were left out of the main paper for clarity and brevity. These are mostly straightforward calculations.

1 Terras' theorem in $\mathbb{F}_{2}[t]$

1.1 The map Φ_{m}

Let $\Phi_{m}: \mathbb{F}_{2}[t] / t^{N} \rightarrow\{0,1\}^{N}$ be defined as the function which maps each element $f \in \mathbb{F}_{2}[t]$ of degree less than N to the first N terms of its parity sequence.

Lemma 1.1. The map Φ_{m} described above is a set bijection. That is, every sequence $\left\{p_{0}, p_{1}, \ldots, p_{N-1}\right\}$ with $p_{i} \in\{0,1\}$ is the first N terms of the parity sequence of a unique polynomial $f \in \mathbb{F}_{2}[t]$ with $\operatorname{deg} f<N$. Specifically, the parity sequence determines the initial polynomial f and its N-th iterate $T^{N}(f)$ as follows, up to choice of q_{N} :

$$
\begin{aligned}
f & =g_{N-1}+t^{N} q_{N}, & \operatorname{deg} g_{N-1}<N \\
T^{N}(f) & =h_{N-1}+m^{s(N)} q_{N}, & \operatorname{deg} h_{N-1}<d s(N)
\end{aligned}
$$

where $d=\operatorname{deg} m$ and $s(N)=\sum_{i=0}^{N-1} p_{i}$. Therefore, parity sequences of polynomials in $\mathbb{F}_{2}[t]$ of degree $<N$ are distributed uniformly in $\{0,1\}^{N}$.

In the paper we prove this lemma by induction on N. When we come to the inductive step, there are four cases to consider, depending on the values of $h_{N-1}(0)$ and p_{N} in $\{0,1\}$. Here we give the full proof for all four cases.

Case 1: $h_{N-1}(0)=0, p_{N}=0$. That is, the N-th term of the trajectory is 'even' and q_{N} is also even. Let $q_{N}=t q_{N+1}$. Then the next term is

$$
\begin{aligned}
f_{N+1} & =\frac{f_{N}}{t}=\frac{h_{N-1}+m^{s(N)} q_{N}}{t} \\
& =\frac{h_{N-1}}{t}+m^{s(N)} q_{N+1}
\end{aligned}
$$

We can rewrite the initial polynomial as

$$
f=g_{N-1}+t^{N+1} q_{N+1}
$$

Since $\operatorname{deg} h_{N-1} / t<s(N) \operatorname{deg} m$ and $\operatorname{deg} g_{N-1}<N+1$, the theorem holds in this case.

Case 2: $h_{N-1}(0)=0, p_{N}=1$. That is, the N-th term of the trajectory is odd and q_{N} is also odd. Let $q_{N}=1+t q_{N+1}$. Then the next term is

$$
\begin{aligned}
f_{N+1} & =\frac{m\left[h_{N-1}+m^{s(N)} q_{N}\right]+1}{t} \\
& =\frac{m h_{N-1}+m^{s(N+1)}+1}{t}+m^{s(N+1)} q_{N+1}
\end{aligned}
$$

Let $h_{N}=\frac{m h_{N-1}+m^{s(N+1)}+1}{t}$. Since $\operatorname{deg} h_{N-1}<2 s(N)$, we have $\operatorname{deg} h_{N}<$ $(\operatorname{deg} m) s(N+1)$ as required. We rewrite the initial polynomial as

$$
\begin{aligned}
f & =g_{N-1}+t^{N}\left(t q_{N+1}+1\right) \\
& =\left(g_{N-1}+t^{N}\right)+t^{N+1} q_{N+1}
\end{aligned}
$$

Clearly $\operatorname{deg}\left(g_{N-1}+t^{N}\right)<N+1$, so the theorem holds in this case.
Case 3: $h_{N-1}(0)=1, p_{N}=0$. That is, the N-th term of the trajectory is even and q_{N} is odd. Let $q_{N}=1+t q_{N+1}$. Then the next term is

$$
\begin{aligned}
f_{N+1} & =\frac{h_{N-1}+m^{s(N)} q_{N}}{t} \\
& =\frac{h_{N-1}+m^{s(N)}}{t}+m^{s(N+1)} q_{N+1}
\end{aligned}
$$

Let $h_{N}=\left(h_{N-1}+m^{X}\right) / t$. Since $\operatorname{deg} h_{N-1}<2 s(N+1)$, we have $\operatorname{deg} h_{N}<s(N+1) \operatorname{deg} m$ as required. Next we rewrite the initial polynomial as

$$
\begin{aligned}
f & =g_{N-1}+t^{N} q_{N} \\
& =g_{N-1}+t^{N}+t^{N+1} q_{N+1}
\end{aligned}
$$

And we know $g_{N-1}+t^{N}$, has degree less than $N+1$, so the theorem holds in this case.

Case 4: $h_{N-1}(1)=1, p_{N}=1$. That is, the N-th term of the trajectory is odd and q_{N} is even. Let $q_{N}=t q_{N+1}$. Then the next term is

$$
\begin{aligned}
f_{N+1} & =\frac{m\left[h_{N-1}+m^{s(N)} q_{N}\right]+1}{t} \\
& =\frac{m h_{N-1}+1}{t}+m^{s(N+1)} q_{N+1} .
\end{aligned}
$$

Let $h_{N}=\left(m h_{N-1}+1\right) / t$. This has degree $<2 s(N+1)$ as required. Lastly, we rewrite the initial polynomial:

$$
\begin{aligned}
f & =g_{N-1}+t^{N} q_{N} \\
& =g_{N-1}+t^{N+1} q_{N+1} .
\end{aligned}
$$

The theorem is satisfied because $\operatorname{deg} g_{N-1}<N+1$.

1.2 Gambler's Ruin

In the paper, we describe how the problem of determining the probability that a polynomial $f \in \mathbb{F}_{2}[t]$ will have finite stopping time can be formulated as a version of the well-known "gambler's ruin" problem. We prove the following lemma.

Lemma 1.2. For $k=0, \ldots, N-1$, let X_{k} be IID uniform Bernoulli variables and let P_{d} be defined

$$
P_{d}=P\left(\exists N>0: \sum_{k=0}^{N-1} X_{k}<\frac{1}{d} N\right) .
$$

Then $P_{1}=P_{2}=1$, and for $d>2, P_{d}$ is the unique real root of the polynomial $g_{d}(z)=z^{d}-2 z+1$ lying inside the unit disk.

Here we present some additional details of the proof that were left out of the paper to save space.

1.2.1 Solving a linear recurrence

For $d>2$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ be the d distinct complex roots of the polynomial $g_{d}(z)=z^{2}-2 z+1$. In the paper, we write the probability of ruin in this case as

$$
P_{d}=\lim _{W \rightarrow \infty} P_{d, W}=\lim _{W \rightarrow \infty}\left(c_{1}+c_{2}+\ldots+c_{d}\right),
$$

where c_{j} are the solutions of the following linear system:

$$
\left[\begin{array}{ccccc}
\lambda_{1}^{-1} & \lambda_{2}^{-1} & \lambda_{3}^{-1} & \cdots & \lambda_{d}^{-1} \\
\lambda_{1}^{W} & \lambda_{2}^{W} & \lambda_{3}^{W} & \cdots & \lambda_{d}^{W} \\
\lambda_{1}^{W+1} & \lambda_{2}^{W+1} & \lambda_{3}^{W+1} & \cdots & \lambda_{d}^{W+1} \\
\vdots & \vdots & \vdots & & \vdots \\
\lambda_{1}^{W+d-1} & \lambda_{2}^{W+d-1} & \lambda_{3}^{W+d-1} & \cdots & \lambda_{d}^{W+d-1}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{d}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

This system can be solved analytically using Cramer's rule. Let A be the $d \times d$ matrix above and let b be the column vector on the right-hand side of the system. Using Cramer's rule, we write

$$
\begin{equation*}
U_{0}=\sum_{i=1}^{d} c_{i}=\frac{\sum_{i=1}^{d} \operatorname{det} A_{i}}{\sum_{i=1}^{d} \lambda_{i}^{-1} A_{1, i}} \tag{1}
\end{equation*}
$$

where A_{i} is the matrix formed by replacing the i-th column of A with b, and $A_{i, j}$ is the i, j cofactor of A.

Because b in this case is just the first standard basis vector, $\operatorname{det} A_{i}=A_{1, i}$ for each $1 \leq i \leq d$. We compute $A_{1,1}$ as an example; the others follow the exact same pattern.

$$
\begin{aligned}
\operatorname{det} A_{1} & =\operatorname{det}\left[\begin{array}{ccccc}
1 & \lambda_{2}^{-1} & \lambda_{3}^{-1} & \cdots & \lambda_{d}^{-1} \\
0 & \lambda_{2}^{W} & \lambda_{3}^{W} & \cdots & \lambda_{d}^{W} \\
0 & \lambda_{2}^{W+1} & \lambda_{3}^{W+1} & \cdots & \lambda_{d}^{W+1} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & \lambda_{2}^{W+d-1} & \lambda_{3}^{W+d-1} & \cdots & \lambda_{d}^{W+d-1}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
\lambda_{2}^{W} & \lambda_{3}^{W} & \cdots & \lambda_{d}^{W} \\
\lambda_{2}^{W+1} & \lambda_{3}^{W+1} & \cdots & \lambda_{d}^{W+1} \\
\vdots & \vdots & & \vdots \\
\lambda_{2}^{W+d-1} & \lambda_{3}^{W+d-1} & \cdots & \lambda_{d}^{W+d-1}
\end{array}\right] \\
& =\prod_{j=2}^{d} \lambda_{j}^{W} \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{2} & \lambda_{3} & \cdots & \lambda_{d} \\
\vdots & \vdots & & \vdots \\
\lambda_{2}^{d-1} & \lambda_{3}^{d-1} & \cdots & \lambda_{d}^{d-1}
\end{array}\right]
\end{aligned}
$$

The matrix in the last row above is a Vandermonde matrix with parameters $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{d}$, so its determinant is $\prod_{2 \leq j<k \leq d}\left(\lambda_{k}-\lambda_{j}\right)$. More generally, for any $1 \leq i \leq d$, let B_{i} be the determinant of the $(d-1) \times(d-1)$

Vandermonde matrix with parameters $\lambda_{1}, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_{d}$. Then

$$
B_{i}=\prod_{\substack{1 \leq j<k \leq d \\ j, k \neq i}}\left(\lambda_{k}-\lambda_{j}\right)
$$

And since $\prod_{j=1}^{d} \lambda_{j}=1$, we can write

$$
\begin{aligned}
\operatorname{det} A_{i} & =(-1)^{1+i} \prod_{\substack{1 \leq j \leq d \\
j \neq i}} \lambda_{j}^{W} B_{i} \\
& =(-1)^{1+i} \lambda_{i}^{-W} B_{i}
\end{aligned}
$$

We can now rewrite equation (1) as follows:

$$
U_{0}=\frac{\sum_{i=1}^{d}(-1)^{1+i} \lambda_{i}^{-W} B_{i}}{\sum_{i=1}^{d}(-1)^{1+i} \lambda_{i}^{-W-1} B_{i}}
$$

This makes it clear that if there exists a root λ_{1} of $g_{d}(z)$ with minimal absolute value, then $\lim _{W \rightarrow \infty} U_{0}=\lambda_{1}$.

1.2.2 The roots of $g_{d}(z)$

Here we provide a fully detailed proof that for $d>2, g_{d}(z)=z^{d}-2 z+1$ has a unique root inside the unit disk, and that this root is real and positive. Using Descartes' rule of signs, we determine that there are two positive real roots of $g_{d}(z)$, one of which is $z=1$. Since $g_{d}^{\prime}(1)=d-2>0$, we know that $g_{d}(1-\epsilon)<0$ for small positive epsilon. On the other hand, $g_{d}(1 / 2)=(1 / 2)^{d}>0$, so the other real root must lie in the interval $(1 / 2,1)$.

Next, we use Rouche's theorem to prove that there is only one root within the unit circle. Let $f(z)=z^{d}$ and let $h(z)=-2 z+1$. For small positive ϵ, consider the circle $C_{\epsilon}=\{z \in \mathbb{C}:|z|=1-\epsilon\}$. The function f maps C_{ϵ} to a smaller circle $|z|=(1-\epsilon)^{d}$. Define $m_{f}(\epsilon)=(1-\epsilon)^{d}$. Then $|f(z)|=m_{f}(\epsilon)$ for all $z \in C_{\epsilon}$. The other function h maps C_{ϵ} to a circle of radius $2(1-\epsilon)$ centered at $z=1$. The point on this circle closest to the origin is the point $z=-1+2 \epsilon$, with magnitude $|-1+2 \epsilon|=1-2 \epsilon$. Define $m_{h}(\epsilon)=1-2 \epsilon$. Then for all $z \in C_{\epsilon},|h(z)| \geq m_{h}(\epsilon)$. See Figure 1 .

We claim that for small positive $\epsilon, m_{h}(\epsilon)>m_{f}(\epsilon)$ and therefore that $|h(z)|>|f(z)|$ for all $z \in C_{\epsilon}$. Notice that $m_{h}(0)=m_{f}(0)=1$. Calculating the derivatives of the two functions, we see that $m_{h}^{\prime}(0)=-2$ and $m_{f}^{\prime}(0)=$ $-d$. By continuity, since $m_{h}^{\prime}(0)>m_{f}^{\prime}(0), m_{h}(\epsilon)$ must be greater than $m_{f}(\epsilon)$ for small positive values of epsilon. Since $|h(z)|>|f(z)|$ for all $z \in C_{\epsilon}$,

Figure 1:

$g_{d}(z)=h(z)+f(z)$ must have the same number of roots within C_{ϵ} as $h(z)$. The function $h(z)=1-2 z$ has one root at $z=1 / 2$. Therefore, for small positive $\epsilon, g_{d}(z)$ has a unique root inside the circle $|z|=1-\epsilon$, which must be the previously mentioned real root lying in the interval $(1 / 2,1)$.

2 Terras' theorem in R_{r}

In the ring $R_{r}=\mathbb{F}_{2}[x, t] /\left(x^{2}+t x+r(t)\right)$, we once again formulate the probability that a randomly chosen polynomial has finite $m x+1$ stopping time as a version of the gambler's ruin problem. We prove the following lemma.

Lemma 2.1. For $d>0$, let P_{d} be defined

$$
P_{d}=P\left(\exists N>0: \sum_{k=0}^{N-1} X_{k}<\frac{N}{d}\right)
$$

where X_{i} are IID Bernoulli variables taking the value 1 with probability 1/4 and 0 otherwise. If $d \leq 4$, then $P_{d}=1$. If $d>4$, then P_{d} is the unique root of $g_{d}(z)=z^{d}-4 z+3$ inside the unit disk, which is real and lies in the interval $(3 / 4,1)$.

Here we present some additional details of the proof that were left out of the paper to save space.

2.1 Solving a recurrence relation

As in $\mathbb{F}_{2}[t]$, we first use a recurrence relation to solve the alternate version of the game which ends if the gambler reaches a value of $\$ W$. We label U_{k} the probability of ruin under these conditions given a starting value of $\$ k$. Clearly $U_{k}=-1$ for all $k<0$ and $U_{k}=0$ for all $k \geq W$. For other values of k, we have the following linear recurrence relation.

$$
U_{k}=\frac{3}{4} U_{k-1}+\frac{1}{4} U_{k+d-1}
$$

Our goal is to find the value of U_{0}, representing the probability of ruin (depending on W) starting from a value of 0 . If we then take the limit of this quantity as $W \rightarrow \infty$, we will learn the actual probability of ruin in a game with no upper limit.

The auxiliary polynomial for the recurrence is $g_{d}(z)=z^{d}-4 z+3$, which is separable as long as $d \neq 4$. When $d=4$ the root $z=1$ has multiplicity 2 , so we handle this case first. In this case, the solutions to the recurrence equation will take the form $U_{k}=c_{1}+c_{2} k+c_{3} \lambda^{k}+c_{4} \bar{\lambda}^{k}$. Since we know that $U_{-1}=1$ and $U_{W}=U_{W+1}=U_{W+2}=0$, we can find the specific solution we need by solving the following linear system:

$$
\left[\begin{array}{cccc}
1 & -1 & \lambda^{-1} & \bar{\lambda}^{-1} \\
1 & W & \lambda^{W} & \bar{\lambda}^{W} \\
1 & W+1 & \lambda^{W+1} & \bar{\lambda}^{W+1} \\
1 & W+2 & \lambda^{W+2} & \bar{\lambda}^{W+2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

The quantity we are seeking is then $U_{0}=c_{1}+c_{3}+c_{4}$. We label the 4×4 matrix above A. Using Cramer's rule, we write

$$
\begin{aligned}
U_{0} & =c_{1}+c_{3}+c_{4} \\
& =\frac{\operatorname{det} A_{1}}{\operatorname{det} A}+\frac{\operatorname{det} A_{3}}{\operatorname{det} A}+\frac{\operatorname{det} A_{4}}{\operatorname{det} A} \\
& =\frac{\operatorname{det} A_{1}+\operatorname{det} A_{3}+\operatorname{det} A_{4}}{\operatorname{det} A}
\end{aligned}
$$

where A_{j} is the determinant of A with the column j replaced by $[1,0, \ldots, 0]$. Next, we expand the determinant of A in terms of the cofactors.

$$
\operatorname{det} A=A_{1,1}-A_{1,2}+\lambda^{-1} A_{1,3}+\bar{\lambda}^{-1} A_{1,4} .
$$

For this linear system, because the right-hand vector b is just the first standard basis vector, the determinant of A with the j-th column replaced
by b is the same as the $(1, j)$-cofactor of A. That is, $\operatorname{det} A_{i}=A_{1, i}$. This allows us to write

$$
U_{0}=\frac{A_{1,1}+A_{1,3}+A_{1,4}}{A_{1,1}-A_{1,2}+\lambda^{-1} A_{1,3}+\bar{\lambda}^{-1} A_{1,4}} .
$$

We argue that $A_{1,1}$ dominates the other terms asymptotically as $W \rightarrow \infty$, and therefore that $P_{4}=\lim _{W \rightarrow \infty} U_{0}=1$. We must express all four cofactors as functions of W.

$$
\begin{aligned}
A_{1,1} & =\left|\begin{array}{ccc}
W & \lambda^{W} & \bar{\lambda}^{W} \\
W+1 & \lambda^{W+1} & \bar{\lambda}^{W+1} \\
W+2 & \lambda^{W+2} & \bar{\lambda}^{W+2}
\end{array}\right|=\lambda^{W} \bar{\lambda}^{W}\left|\begin{array}{ccc}
W & 1 & 1 \\
W+1 & \lambda & \bar{\lambda} \\
W+2 & \lambda^{2} & \bar{\lambda}^{2}
\end{array}\right| \\
& =\lambda^{W} \bar{\lambda}^{W}\left(W\left|\begin{array}{cc}
\lambda & \bar{\lambda} \\
\lambda^{2} & \bar{\lambda}^{2}
\end{array}\right|-\left|\begin{array}{cc}
W+1 & \bar{\lambda} \\
W+2 & \bar{\lambda}^{2}
\end{array}\right|+\left|\begin{array}{cc}
W+1 & \lambda \\
W+2 & \lambda^{2}
\end{array}\right|\right) \\
& =\lambda^{W} \bar{\lambda}^{W}\left[W\left(\lambda \bar{\lambda}^{2}-\lambda^{2} \bar{\lambda}\right)-\left(W \bar{\lambda}^{2}+\bar{\lambda}^{2}-W \bar{\lambda}-2 \bar{\lambda}\right)+\left(W \lambda^{2}+\lambda^{2}-W \lambda-2 \lambda\right)\right] \\
& =\lambda^{W} \bar{\lambda}^{W}\left[W\left(\lambda \bar{\lambda}^{2}-\lambda^{2} \bar{\lambda}+\lambda^{2}-\bar{\lambda}^{2}+\bar{\lambda}-\lambda\right)+\lambda^{2}-\bar{\lambda}^{2}+2 \bar{\lambda}-2 \lambda\right]
\end{aligned}
$$

Here we use the fact that λ and $\bar{\lambda}$ are the roots of $x^{2}+2 x+3$.

$$
\begin{aligned}
& =3^{W}[W(3 \bar{\lambda}-3 \lambda-2 \lambda-3+2 \bar{\lambda}+3+\bar{\lambda}-\lambda)-2 \lambda-3+2 \bar{\lambda}+3+2 \bar{\lambda}-2 \lambda] \\
& =6(\bar{\lambda}-\lambda) W 3^{W}+4(\bar{\lambda}-\lambda) 3^{W} .
\end{aligned}
$$

$$
\begin{aligned}
A_{1,2} & =-\left|\begin{array}{ccc}
1 & \lambda^{W} & \bar{\lambda}^{W} \\
1 & \lambda^{W+1} & \bar{\lambda}^{W+1} \\
1 & \lambda^{W+2} & \bar{\lambda}^{W+2}
\end{array}\right|=-\lambda^{W} \bar{\lambda}^{W}\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \lambda & \bar{\lambda} \\
1 & \lambda^{2} & \bar{\lambda}^{2}
\end{array}\right| \\
& =-3^{W}\left[(3 \bar{\lambda}-3 \lambda)-\left(\bar{\lambda}^{2}-\bar{\lambda}\right)+\left(\lambda^{2}-\lambda\right)\right] \\
& =-3^{W}[3 \bar{\lambda}-3 \lambda+3 \bar{\lambda}+3-3 \lambda-3] \\
& =-6(\bar{\lambda}-\lambda) 3^{W} .
\end{aligned}
$$

$$
\begin{aligned}
A_{1,3} & =\left|\begin{array}{ccc}
1 & W & \bar{\lambda}^{W} \\
1 & W+1 & \bar{\lambda}^{W+1} \\
1 & W+2 & \bar{\lambda}^{W+2}
\end{array}\right|=\bar{\lambda}^{W}\left|\begin{array}{ccc}
1 & W & 1 \\
1 & W+1 & \bar{\lambda} \\
1 & W+2 & \bar{\lambda}^{2}
\end{array}\right| \\
& =\bar{\lambda}^{W}\left(\left|\begin{array}{cc}
W+1 & \bar{\lambda} \\
W+2 & \bar{\lambda}^{2}
\end{array}\right|-W\left|\begin{array}{cc}
1 & \bar{\lambda} \\
1 & \bar{\lambda}^{2}
\end{array}\right|+\left|\begin{array}{cc}
1 & W+1 \\
1 & W+2
\end{array}\right|\right) \\
& =\bar{\lambda}^{W}\left[\left(W \bar{\lambda}^{2}+\bar{\lambda}^{2}-W \bar{\lambda}-2 \bar{\lambda}\right)-W\left(\bar{\lambda}^{2}-W \bar{\lambda}\right)+(W+2-W-1)\right] \\
& =\bar{\lambda}^{W}\left(\bar{\lambda}^{2}-2 \bar{\lambda}+1\right) \\
& =\bar{\lambda}^{W}(-4 \bar{\lambda}-2) .
\end{aligned}
$$

$$
\begin{aligned}
A_{1,4} & =-\left|\begin{array}{ccc}
1 & W & \lambda^{W} \\
1 & W+1 & \lambda^{W+1} \\
1 & W+2 & \lambda^{W+2}
\end{array}\right|=-\lambda^{W}\left|\begin{array}{ccc}
1 & W & 1 \\
1 & W+1 & \lambda \\
1 & W+2 & \lambda^{2}
\end{array}\right| \\
& =-\lambda^{W}\left(\left|\begin{array}{cc}
W+1 & \lambda \\
W+2 & \lambda^{2}
\end{array}\right|-W\left|\begin{array}{cc}
1 & \lambda \\
1 & \lambda^{2}
\end{array}\right|+\left|\begin{array}{cc}
1 & W+1 \\
1 & W+2
\end{array}\right|\right) \\
& =-\lambda^{W}\left[\left(W \lambda^{2}+\lambda^{2}-W \lambda-2 \lambda\right)-W\left(\lambda^{2}-W \lambda\right)+(W+2-W-1)\right] \\
& =-\lambda^{W}\left(\lambda^{2}-2 \lambda+1\right) \\
& =-\lambda^{W}(-4 \lambda-2) .
\end{aligned}
$$

To summarize, the asymptotic growth rates of the cofactors are:

$$
\begin{aligned}
& A_{1,1} \sim W 3^{W} \\
& A_{1,2} \sim 3^{W} \\
& A_{1,3} \sim \lambda^{W} \\
& A_{1,4} \sim \bar{\lambda}^{W} .
\end{aligned}
$$

It is clear that $A_{1,1}$ dominates the other cofactors as $W \rightarrow \infty$. Since the numerator and denominator have the same dominant term with the same coefficient, the probability of ruin in this case is

$$
P_{4}=\lim _{W \rightarrow \infty} P_{4, W}=1 .
$$

For $d \neq 4$ we have $\operatorname{gcd}\left(f, f^{\prime}\right)=1$, so in this case the polynomial is separable. Therefore every solution must have the form $U_{k}=c_{1} \lambda_{1}^{k}+c_{2} \lambda_{2}^{k}+$ $\ldots+c_{d} \lambda_{d}^{k}$. The linear system we must solve is exactly the same as the one we found in $\mathbb{F}_{2}[t]$, except that the roots λ_{i} are now the roots of $z^{d}-4 z+3=0$.

$$
\left[\begin{array}{ccccc}
\lambda_{1}^{-1} & \lambda_{2}^{-1} & \lambda_{3}^{-1} & \cdots & \lambda_{d}^{-1} \\
\lambda_{1}^{W} & \lambda_{2}^{W} & \lambda_{3}^{W} & \cdots & \lambda_{d}^{W} \\
\lambda_{1}^{W+1} & \lambda_{2}^{W+1} & \lambda_{3}^{W+1} & \cdots & \lambda_{d}^{W+1} \\
\vdots & \vdots & \vdots & & \vdots \\
\lambda_{1}^{W+d-1} & \lambda_{2}^{W+d-1} & \lambda_{3}^{W+d-1} & \cdots & \lambda_{d}^{W+d-1}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{d}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

We can solve this system in the same way, using Cramer's rule and Vandermonde determinants. The product of all the roots is still the constant term of $g_{d}(z)$, which in this case is $\prod_{j=1}^{d} \lambda_{j}=3$. So $\operatorname{det} A_{i}=$
$(-1)^{1+i} 3^{W} \lambda_{i}^{-W} B_{i}$, and the solution to the recurrence relation is

$$
\begin{aligned}
P_{d, W}=U_{0} & =\sum_{j=1}^{d} c_{j} \\
& =\sum_{j=1}^{d} \frac{\operatorname{det} A_{j}}{\operatorname{det} A} \\
& =\frac{\sum_{j=1}^{d}(-1)^{1+j} 3^{W} \lambda_{j}^{-W} B_{j}}{\sum_{j=1}^{d}(-1)^{1+j} 3^{W} \lambda_{j}^{-W-1} B_{j}}
\end{aligned}
$$

where B_{j} are defined as Vandermonde determinants as before. Just as in $\mathbb{F}_{2}[t]$, if λ_{1} is a real root with strictly smaller absolute value than all of the others, then the limit of the above quantity is

$$
P_{d}=\lim _{W \rightarrow \infty} U_{0}=\lambda_{1}
$$

2.2 Roots of $g_{d}(z)$

We will now examine the polynomial $g_{d}(z)=z^{d}-4 z+3$ and show that when $d \neq 4$, such a root does in fact exist.
$d=2$: The polynomial $g_{2}(z)=z^{2}-4 z+3$ has roots at $z=1$ and $z=3$. Since $z=1$ is the root with the smallest magnitude, the probability of ruin is 1 .
$d=3:$ We write $g_{3}(z)=z^{3}-4 z+3=(z-1)\left(z^{2}+z-3\right)$. Using the quadratic formula, we find that the roots of $z^{2}+z-3$ are $z=-\frac{1}{2} \pm \frac{\sqrt{13}}{2}$, both of which have magnitude >1. Since $z=1$ is the root with the smallest magnitude, the probability of ruin is 1 .
$d>4$: Using Descartes' rule of signs, we determine that there are two positive real roots of $g_{d}(z)$. We know that one of these is $z=1$. Since $g_{d}^{\prime}(1)=d-4>0$, we know that $g_{d}(1-\epsilon)<0$ for small positive epsilon. On the other hand, $g_{d}(3 / 4)=(3 / 4)^{d}>0$. Therefore, the other real root must lie in the interval $(3 / 4,1)$.

Next, we use Rouche's theorem to prove that there is only one root within the unit circle. Let $f(z)=z^{d}$ and let $h(z)=-4 z+3$. For small positive ϵ, consider the circle $C_{\epsilon}=\{z \in \mathbb{C}:|z|=1-\epsilon\}$. The function f maps C_{ϵ} to a smaller circle $|z|=(1-\epsilon)^{d}$. Define $m_{f}(\epsilon)=(1-\epsilon)^{d}$. Then $|f(z)|=m_{f}(\epsilon)$ for all $z \in C_{\epsilon}$.

The other function h maps C_{ϵ} to a circle of radius $4(1-\epsilon)$ centered at $z=3$. The point on this circle closest to the origin is the point $z=-1+4 \epsilon$, with magnitude $|-1+4 \epsilon|=1-4 \epsilon$. Define $m_{h}(\epsilon)=1-4 \epsilon$. Then for all $z \in C_{\epsilon},|h(z)| \geq m_{h}(\epsilon)$.

We claim that for small positive $\epsilon, m_{h}(\epsilon)>m_{f}(\epsilon)$ and therefore that $|h(z)|>|f(z)|$ for all $z \in C_{\epsilon}$. Notice that $m_{h}(0)=m_{f}(0)=1$. Calculating the derivatives of the two functions, we see that $m_{h}^{\prime}(0)=$ -4 and $m_{f}^{\prime}(0)=-d$. By continuity, since $m_{h}^{\prime}(0)>m_{f}^{\prime}(0), m_{h}(\epsilon)$ must be greater than $m_{f}(\epsilon)$ for small positive values of epsilon.
Since $|h(z)|>|f(z)|$ for all $z \in C_{\epsilon}, g_{d}(z)=h(z)+f(z)$ must have the same number of roots within C_{ϵ} as $h(z)$. The function $h(z)=3-4 z$ has one root at $z=3 / 4$. Therefore, for small positive $\epsilon, g_{d}(z)$ has a unique root inside the circle $|z|=1-\epsilon$, which must be the previously mentioned real root lying in the interval $(3 / 4,1)$. Since this root has the smallest magnitude among roots of $g_{d}(z)$, the value of this root is the probability of ruin P_{d}.

