
1 Waves on the half-line

1.1 Dirichlet boundary condition

We will use the reflection method to solve the boundary value problems associated with the wave equation on the

half-line 0<x<∞. Let us start with the Dirichlet boundary condition first, and consider the initial boundary

value problem 
vtt−c2vxx=0, 0<x<∞,0<t<∞,

v(x,0)=φ(x), vt(x,0)=ψ(x), x>0,

v(0,t)=0, t>0.

(1.1)

For the vibrating string, the boundary condition of (1.1) means that the end of the string at x=0 is held fixed.

We reduce the Dirichlet problem (1.1) to the whole line by the reflection method. The idea is again to extend

the initial data, in this case φ,ψ, to the whole line, so that the boundary condition is automatically satisfied

for the solutions of the IVP on the whole line with the extended initial data. Since the boundary condition

is in the Dirichlet form, one must take the odd extensions

φodd(x)=


φ(x) forx>0,

0 forx=0,

−φ(−x) forx<0.

ψodd(x)=


ψ(x) forx>0,

0 forx=0,

−ψ(−x) forx<0.

(1.2)

Consider the IVP on the whole line with the extended initial data
utt−c2uxx=0, −∞<x<∞,0<t<∞,

u(x,0)=φodd(x),ut(x,0)=ψodd(x).

(1.3)

Since the initial data of the above IVP are odd, we know from a homework problem that the solution of the

IVP, u(x,t), will also be odd in the x variable, and hence u(0,t)=0 for all t>0. Then defining the restriction

of u(x,t) to the positive half-line x≥0,

v(x,t)=u(x,t)
∣∣
x≥0

, (1.4)

we automatically have that v(0,t)=u(0,t)=0. So the boundary condition of the Dirichlet problem (1.1) is

satisfied for v. Obviously the initial conditions are satisfied as well, since the restrictions of φodd(x) and ψodd(x)
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to the positive half-line are φ(x) and ψ(x) respectively. Finally, v(x,t) solves the wave equation for x>0, since

u(x,t) satisfies the wave equation for all x∈R, and in particular for x> 0. Thus, v(x,t) defined by (1.4) is

a solution of the Dirichlet problem (1.1). It is clear that the solution must be unique, since the odd extension

of the solution will solve IVP (1.3), and therefore must be unique.

Using d’Alambert’s formula for the solution of (1.3), and taking the restriction (1.4), we have that for x≥0,

v(x,t)=
1

2
[φodd(x+ct)+φodd(x−ct)]+

1

2c

ˆ x+ct

x−ct

ψodd(s)ds. (1.5)

Notice that if x≥ 0 and t > 0, then x+ct > 0, and φodd(x+ct) = φ(x+ct). If in addition x−ct > 0, then

φodd(x−ct)=φ(x−ct), and over the interval s∈ [x−ct,x+ct], ψodd(s)=ψ(s). Thus, for x>ct, we have

v(x,t)=
1

2
[φ(x+ct)+φ(x−ct)]+ 1

2c

ˆ x+ct

x−ct

ψ(s)ds, (1.6)

which is exactly d’Alambert’s formula.

For 0<x<ct, the argument x−ct<0, and using (1.2) we can rewrite the solution (1.5) as

v(x,t)=
1

2
[φ(x+ct)−φ(ct−x)]+ 1

2c

[ˆ 0

x−ct

−ψ(−s)ds+
ˆ x+ct

0

ψ(s)ds

]
.

Making the change of variables s 7→−s in the first integral on the right, we get

v(x,t)=
1

2
[φ(x+ct)−φ(ct−x)]+ 1

2c

[ˆ 0

ct−x

ψ(s)ds+

ˆ x+ct

0

ψ(s)ds

]
=
1

2
[φ(x+ct)−φ(ct−x)]+ 1

2c

ˆ x+ct

ct−x

ψ(s)ds.

One could also use the fact that the integral of the odd function ψodd(s) over the symmetric interval [x−ct,ct−x]

is zero, thus
´ x+ct

x−ct
ψodd(s)ds=

´ x+ct

ct−x
ψ(s)ds.

The two different cases giving different expressions are illustrated in Figures 1.1 and 1.2 below. Notice how

one of the characteristics from a point with x0<ct0 gets reflected from the “wall” at x=0 in Figure 1.2.

Combining the two expressions for v(t,x) over the two regions, we arrive at the solution

v(x,t)=


1

2
[φ(x+ct)+φ(x−ct)]+ 1

2c

ˆ x+ct

x−ct

ψ(s)ds, forx>ct

1

2
[φ(x+ct)−φ(ct−x)]+ 1

2c

ˆ x+ct

ct−x

ψ(s)ds, for0<x<ct.

(1.7)

The minus sign in front of φ(ct−x) in the second expression above, as well as the reduction of the integral

of ψ to the smaller interval are due to the cancellation stemming from the reflected wave. The next example
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Figure 1.1: The case with x0>ct0.
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Figure 1.2: The case with x0<ct0.

illustrates this phenomenon.

1.2 Neumann boundary condition

For the Neumann problem on the half-line,
wtt−c2wxx=0, 0<x<∞,0<t<∞,

w(x,0)=φ(x), wt(x,0)=ψ(x), x>0,

wx(0,t)=0, t>0,

(1.8)

we use the reflection method with even extensions to reduce the problem to an IVP on the whole line. Define

the even extensions of the initial data

φeven=


φ(x) forx≥0,

φ(−x) forx≤0,

ψeven=


ψ(x) forx≥0,

ψ(−x) forx≤0.

(1.9)

and consider the following IVP on the whole line
utt−c2uxx=0, −∞<x<∞,0<t<∞,

u(x,0)=φeven(x), ut(x,0)=ψeven(x).

(1.10)

Clearly, the solution u(x,t) to the IVP (1.10) will be even in x, and since the derivative of an even function

is odd, ux(x,t) will be odd in x, and hence ux(0,t)=0 for all t>0. Similar to the case of the Dirichlet problem,

the restriction

w(x,t)=u(x,t)
∣∣
x≥0

will be the unique solution of the Neumann problem (1.8).

Using d’Alambert’s formula for the solution u(x,t) of (1.10), and taking the restriction to x≥0, we get

w(x,t)=
1

2
[φeven(x+ct)+φeven(x−ct)]+

1

2c

ˆ x+ct

x−ct

ψeven(s)ds. (1.11)
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One again needs to consider the two cases x>ct and 0<x<ct separately. Notice that with the even extensions

we will get additions, rather than cancellations. Using the definitions (1.9), the solution (1.11) can be written as

w(x,t)=



1

2
[φ(x+ct)+φ(x−ct)]+ 1

2c

ˆ x+ct

x−ct

ψ(s)ds, forx>ct

1

2
[φ(x+ct)+φ(ct−x)]

+
1

2c

[ˆ ct−x

0

ψ(s)ds+

ˆ x+ct

0

ψ(s)ds

]
, for0<x<ct.

The Neumann boundary condition corresponds to a vibrating string with a free end at x=0, since the string

tension, which is proportional to the derivative vx(x,t), vanishes at x=0. In this case the reflected wave adds

to the original wave, rather than canceling it.

1.3 Conclusion

We derived the solution to the wave equation on the half-line. That is, we reduced the initial/boundary value

problem to the initial value problem over the whole line through appropriate extension of the initial data. In

this case the characteristics nicely illustrate the reflection phenomenon. We saw that the characteristics that

hit the initial data after reflection from the boundary wall x=0 carry the values of the initial data with a minus

sign in the case of the Dirichlet boundary conditions, and with a plus sign in the case of the Neumann boundary

conditions. This corresponds to our intuition of reflected waves from a fixed end, and free end respectively.
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