lll: Banach Spaces

.Reductio ad absurdum is one of @ mathematician's
any chess gambit: a chess player m
mathematician offers the game.

finest weapons. It is a far finer gambit than
ay offer the sacrifice of a pawn or even a piece, but a

G. H. Hardy
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lIl.1 Definition and examples t

We defined normed linear spaces in Section I.2. Since normed linear
spaces are metric spaces, they may have the property of being complete.

Definition A complete normed linear space is called a Banach space.

Banach spaces have many of the properties of R": they are vector spaces,
they have a notion of distance provided by the norm, and every Cauchy
sequence has a limit. In general the norm does not arise from an inner product
(see Problem 4 of Chapter II), so Banach spaces are not necessarily Hilbert
spaces and will not have all of the same nice geometrical properties. In order
to acquaint the reader with the types of Banach spaces he is likely to en-
counter, we discuss several examples in detail.

Example 1 (L°(R) and its subspaces) Lgt L*(R) be the set of (equivalence
classes of) complex-valued measurable functions on R such that | f(x)| < M
a.. with respect to Lebesgue measure for some M < co (f~ g means f(x) =
g(x) a.e.). Let || f]| , be the smallest such M. It is an easy exercise (Problem 1) to

t A supplement to this section begins on p. 348. .
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ith norm ||*| , . The bounge .
show that Lw(m is a Banacl:3 Z;;‘aiz(gl) and restricted t0 C(R) fhs ‘IT'TIOT‘mnuOuS
functions C(R) 1s a Sug‘ﬂ:;cr m under which C(R) is complete (since the ‘?:ir ig
ﬁ::, :lg:ft:s:::i;?lﬂr::}ﬁnctions is continuous). Thus, C(R) is a closed SUbspgee
i
of L*(R). i functions with com

i k(R) of continuous ! pact gy
thzﬁoi:,mtieerc:)]:letirjz:us(ﬁ}nctions that vanish putsnde of slome Closed inal:‘(:;tlf
k(R) is a normed linear space under |||, but 1; m;t Cot'_np et‘;‘-.Tht‘? completioy
of x(R) is not all of C(R); for example, if /'is the func }0" Which is identicyy,
equal to one, then f cannot be appr oxnmatc-'.d by a U"C.UO-H N Kk(R) since
If—glle =1 for all gex(R). The completion of k(R) is just Co(R), the
continuous functions which approach zero at + 0 (Prc?blem 3). Some of the
most powerful theorems in functional gnalysm (Rlesz—Ma!-kov, Stone-
Weierstrass) are generalizations of properties of C(R) (see Sections IV.3 and
IV.4).

Example 2 (I” spaces)  Let (X, u)> be a measure Space and p > 1. We

denote by I”(X, dy) the set of equivalence classes of measurable functions
which satisfy:

AN, = (fx | f(x)|? d,u(x))l/p < oo

Theorem II1.1 Letl<p< 00, then

(a) (the Minkowski inequality) [f fige’(x, du), then

I/ +gl, < 111, + lgll,

(b) (Riesz—Fisher) I*(X, dy) is complete,
(©) (the Holder inequality) Let p q
P, g, r>1and p-t +g ' =p-1 gyor

and r be positive numbers satisfying
fae (X, du) and

- Suppose f¢ (X, dy), g e I9(X, dy). Then

i : € second Spaces, including these inj
ieauality shows that LA(X, dy) i °C SUPplementa] section, The Minkowski

' @ vector space and that ||-[|, satisfies the




triangle inequality. Combined with (b) this shows that LP(X, du) is a Banach
space. We have given the proof of (b) for the case where p=1,X=Rand
u = Lebesgue measure; the proof for the general case is similar.

Example 3 (sequence spaces)  There is a nice class of spaces which is

easy to describe and which we will often use to illustrate various concepts.
In the following definitions,

a= {an}:o=1

always denotes a sequence of complex numbers.

e = {‘a lall, = sup|a,| < oo}

Co = {a lim a, ==0}

n—-aoo
o 1/p
zp={a Ialps(zlla,,l”) <oo}
n=

§ = ‘a lim nPa, =0 for all positive integers p}

n—a

¥ == {a a, =0 for all but a finite number of n]

It is clear that as sets fc s clyccycly.

The spaces ¢, and c, are Banach spaces with the I'llo norm; Z,is a Banach
space with the ||']|, norm (note that this follows from Example 2 since
¢p = I’(R, du) where p is the measure with mass one at each positive integer
and zero everywhere else). It will turn out that s is a Fréchet space (Section
V.2). One of the reasons that these spaces are easy to handle is that fis dense
in £,(in |||l ,; p < ) and is dense in ¢, (in the |||, norm). Actually, the set
of elements of /' with only rational entries is also dense in ¢, and ¢, . Since this
set is countable, £, and ¢, are separable. /,, is not separable (Problem 2).

Example 4 (thebounded operators) In Section 1.3 we defined the concept
of a bounded linear transformation or bounded operator from one normed
linear space, X, to another Y; we will denote the set of all bounded linear
operators from X to Y by £(X, Y). We can introduce a norm on £(X, Y) by

defining 14x]
141l =

xeX,x#0 "x"}{

This norm is often called the operator norm.
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Theorem 112 If Y is complete, Z(X, Y) is a Banach space.

Proof Since any finite linear combination of boqnded operators jg again ,
b::mded operator, Z(X, Y) is a vector space. It is easy to see thyt Il is
norm; for example, the triangle inequality is proven by the computatiy,

(4 + B)x| I 4x]l + IlBx]|
|A + Bl =sup ﬁw— = 2ub

x#0 x#0 ||x||
. ||Ax||+su | Bx||
S Xl as0 I
= || 4|l + ||B]

To show that £(X, Y) is complete, we must prove that if {AJe,isa
Cauchy sequence in the operator norm, then there is a bounded linear
operator A so that |4, — 4] »0. Let {4,}2, be Cauchy in the operator
norm; we construct A as follows. For each x € X, {4, X}, is a Cauchy
sequence in Y. Since Y is complete, A, x converges to an element ye ¥,

Define Ax = y. It is easy to check that 4 is a linear operator. From the
triangle inequality it follows that

I"A,," - "Am[” = "An i Am"

so {l4,I}%,is a Cauchy sequence of real numbers converging to some real
number C. Thus,

lAxly = lim |4, x|y < lim IlA4a1l ]l
— C"x"x

s0 A is a bounded linear operator. We m
operator norm. Since ||(4 — A,)x| = lim

W= Al _ 14
] v w Al

n->an

ust still show that 4, — 4 in the
maw (4, — 4,)x]||, we have

which implies

which is arbitrarily small for n lar : ;
: €¢ enough. Th :
that the norm of 4 jg actually equal to C, g| © triangle incquality shows



space X is called absolutely summable if )’ 2., |lx,|| < co. It is called summable
if }'¥_, x, converges as N — co to an x € X,

Theorem 1.3 A normed linear space is complete if and only if every
absolutely summable sequence is summable.

For a typical application of this theorem, see the construction of quotient

spaces in Section III.4. We conclude this introductory section with some
definitions.

Definition A bounded linear operator from a normed linear space X to

a normed linear space Y is called an isomorphism if it is a bijection which is

continuous and which has a continuous inverse. If it is norm
called an

isometry).

preserving, it is
isometric isomorphism (any norm preserving map is called an

For example, we proved in Section II.3 that all separable, infinite-di-
mensional Hilbert spaces are isometric to Z,. Two Banach spaces which are
isometric can be regarded as the same as far as their Banach space properties
are concerned.

We will often encounter a situation in which we have two different norms
on a normed linear space.

Definition Two norms, |||, and ||||,, on a normed linear space X are

called equivalent if there are positive constants C and C’ such that, for all
xe X,

Clixll, < lxll; < C'lix|l,
For example, the following three norms on R? are al] equivalent:

1<% )12 = /1 %]> + [y]?
1<%, D1, = | x| + |y]
I1<x, ¥>ll o = max{|x]|, | y|}

In fact, all norms on R? are equivalent; see Problem 4. The usual situation we
will encounter is an incomplete normed linear space with two norms. The
completions of the space in the two norms will be isomorphic if and only if the
norms are equivalent. An example is provided .by the.sequence spaces of
Example 3. The completion of f'in the |||, norm is ¢y while the f:ompletion in
the ||-||, norm is £,. Two norms, |||, and |-|l;, on a normed linear space X
are equivalent if and only if the identity map is an isomorphism from

X, 1> to KX, Il




.2 Duals and double duals

last section we proved that the set of bqunded linear transformgy; i

In the Banach space X to another Y was itself a Banach space. I .
from ohne ;js the complex numbers, this space Z(X, C) is denoted by
cai;: wll:;ethe dual space of X. The elements of X* are called boundeq lineay
?:llnc:iznals on X. In this chapter when we tglk about convergence i X* we
always mean convergence in the norm given in Theorem I11.2. If 1 ¢ X*, then

1Al =" sup  |A(x)]
xeX, [[x]l<1
In Section IV.5, we discuss another notion of convergence for X*.

Dual spaces play an important role in mathematical physics. In many
models of physical systems, whether in quantum mechanics, statistical mech-
anics, or quantum field theory, the possible states of the system in question
can be associated with linear functionals on appropriate Banach spaces.
Furthermore, linear functionals are important in the modern theory of partial
differential equations. For these reasons, and because they are interesting in
their own right, dual spaces have been Studied extensively. There are two

.

directions in which such study can proceed: either determining the dual spaces

Example 1 (I? spaces) Suppose that
fe I’(R) and 9 € L'(R) then, accordin
II1.1), fg is in L'(R). Thus

l<p< o and p~' 4 g7t = 1. If
g to the Holder inequality (Theorem

[ 969re ax
makes sense, Let g € L(R) be fixed and define

is equal to lgll,. The converse of this sta
bounded linear functional on I? is of the

: form G- q g
more, different functions in 79 () for some g € I%. Further

give rise to different functionals on I*, Thus,



ouble duals I

the mapping that assigns tg eacp, g € L7 the corresponding linear functional,
G(), on I(R) is a (conjugate linear) isometric isomorphism of I onto

(I")*. Ip this_ lsense: lL'r is the dual of I?. Since the roles of P and q in the
expressionp * +q~! < 1 are Symmetric, it is clear that [P = (LY* = (I")*)*.
That is, the dual of the 4 ,

ual of I s again I?,
The case where p = | ;

s different. The dual of 1!
on functions in 1

er, the dual of L*(
space (see Problems 7 and 8), A5 4 matter of

XVI) that I!(R) is not the dual of any Bana
in this example hold for r7(x, du) where ¢
except that L'(X) may be the dual of ) ind

(R) is L°(R) with the
(R) in the natural way given by
R) is not I}(R) but a much larger
fact, we will prove later (Chapter
ch space. The duality statements

X, 1 isa general measure space
X)if <X, ) is trivially small.

Example 2 (Hilbert spaces) If we let p =2 in Example 1, then g=2
and we obtain the result that I(R) = I2(R)*, ¢y i, LX(R) is its own dual |
space. In fact, we have already shown (the Riesz lemma) in Section 11.2 ||
that this is true for all Hilbert spaces. The reader is cautioned again that the i
map which identifies 5# with its dl.xal xH* i§ conjugate linear. If g € &, then
the linear functional G corresponding to g is G(f) =(9./).

Example 3 (¢, =/1,/, =c})  Suppose that {Adi=1 €4, . Then for each
{8}c=1€Co

t Afa iz ) = :;11" a

converges and A(*) is a continuoqs Iinear- functional. on ¢, with nq;r:;q::;l

oY |&|. To see that all contmuouslllrlear functuznals on ¢, ari n th
! way we proceed as follows. Suppose 4 € & and let e" be the Seq[uencDeﬁn:
: Whic’h has all its terms equal to zero except for a one in the kt.h P lact(:-m 5

h=A(¢") and let f¢ = b= 1) 4] JA)ex. If some 4, is %ero, wle sé?:::

term from the sum. Then for each £, f €coand || f],, =1 .

‘ \ ]
9= Y 1Al and AU SISl

¥e have
I'4

1 < M“m"
g k=21| ol <
e Yince s nd
Ty ® this ig true for all Z, z;?.—.-; “'kl <®d
eI
us,

A{ak=y) = k;A" ar
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: ' c.. However, A(") and A(") agree
. ; WF“-deﬁnedbl'lr:?;nfsuz?t:zzf,, .c,r]laecoause such finite 1im?ar CO_mb{g:aﬁoc::;
finite linear combin conclude that 4 =A. Thus every functional in ¢} arises
are dense in Co, .we[ and the reader can check for himself that the norms i,
o s . £
1 and Co '

; * of a Banach spac¢ is itself a ].Banach space (Theorem
IIISlZI)\C?t tatlfodl:laasl a}iiual space, denoted by X . i):f **is ;Cagec; t!\et;econd dua)
thc; bi’dual, or the double dual of the space X In_ x.ampde t, ; 1: ItS N f ﬁrst dua]
of ¢, and £, is the second dual. It is not a priori evident that X* is alway,

< n; if X* = {0} then x** = {0} too. Howevqr, thls'snuatlon does not
Eggjs;rzsal spaces always have plenty of linear func;tlonals in thetr‘n. We prove
this fact in the next section. Using 2 corollary a Sobprovf?n :* ere we will
prove that X can be regarded in 2 natural way as a subset of X**.

Theorem I11.4  Let Xbea Banach space. For each x € X, let %(-) be the
linear functional on X* which assigns to egch A e X* the numbel‘- A(X). Then
the map J: x — & is an isometric isomorphism of X onto a (possibly proper)
subspace of X**.

Proof Since
|%A)| = [A0)] < Al xsllxllx

% is a bounded linear functional on X* with norm || x| xee < |||l x. It follows
from Theorems I11.5 and 111.6 that, given x, we can find a A € X* so that

lAlxe=1 and  A(x) = |Ix|lx
This shows that
[Xllxee = sup [X(A)| = |Ix]x

AeX*, |lal <1
which implies that
1%l xee = Ixlix

Thus, J is an isometry of X into X**, |}

Definition  If the map J, defined in Theo

il rem I11.4, is surjective, then X
1s said to be reflexive. )

The I(R) spaces are reflexive for 1 i 7, but
faxh < , . <p < o since (IF)** = (L)* =L
if;(“:) lsb ?ot reﬂe.xlve. All Hilbert Spaces are reflexive. c, )is not reflexive, sinf:e

§ couble dual is /,,. The theory of reflexive spaces is developed further "
Problems 22 and 26 of this ¢

hapter and Problem 15 of Chapter V.
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.3 The Hahn-Banach theorem K3

1i1.3 The Hahn—-Banach theorem

theorem M11.5 (Hahn-Banach theorem) gy bearealvcctorspace,pa
rcal-Val“ed function defined on X satisfyj

) ng plax + (1 - a)y) < ap(x) +
| —a)p(y) for all x and y in X and ajj 4 €[0, 1]. Suppose that 1 is a linear
gunctional defined on a subspace y of X which satisfies A(x) < p(x) for all

Y. Then, there is a linear functiong] A, defined on X, satisfying A(x) <
x(j) f;)r all x € X, such that A(x) = A(x) for all x e Y.
4

The idea of the proof is the follow
Praﬂbet z¢ Y, then we can extend A to a functional having the right proper-
o ! the space spanned by z and Y. We then use a Zorn’s lemma argument
::)cil?:w that this process can be continued to extend A to the whole space X,

Let ¥ denote the subspace spanned by ¥ and z. The extension of 4 to ¥,
allit 4, is specified as soon as we define J(z) since

ing. First we will show that if

Aaz + y) = al(z) + A(y)
Suppose that y;, ¥, € ¥, a, B > 0. Then

B o
00 +2d2) = 48y, + a92) = o+ DALy 4 )

<@+ ﬂ)p(a—fﬁ 0 =) + 2 0, 4 62)

< fp(y; — az) + ap(y, + pz)
Thus,forall %B>0 and Y, y; €Y,
1

1
2 =P~ a2) + 2(py)) < g

[p(y; + B2) = Ay))]




o therefore find a real number a such that
a

We ¢
. . T1
sup [é(_p(y —az) + A(y))] <a< »"3§ [; (P(y + az) — ).(y))]
250 g

e X(z) = a. It may be easily verified that the resulting extens;
X&ggg ﬂ‘;f)h; pfx; for all xe ¥. This shows that A can be extended s::;
: i a time.
dlw:::g:z :trc;cced with the Zorn’s lemma argument. Let & be the collectiop
of extensions e of A which satisfy e(.)f) < p(x) on the subspace where they are
defined. We partially order & by setting e; < e, if e, is defined on a larger gof
than e; and e,(x) = &;(x) where they are both deﬁnec}. Let{e},..bea linearly
ordered subset of &; let X, be the sybspace on which e, is defined. Define ,
on (Jae 4 Xe by setting e(x) = e,(x) if x e X,. Clearly e, < e so each linearly
ordered subset of & has an upper bound. By Zorn’s lemma, & has a maxima]
element A, defined on some set X', satisfying A(x) < p(x) for x e X", But, '
must be all of X, since otherwise we could extend AtoaA ona larger Sl;ace
by adding one dimension as above. Since this contradicts the maximality
of A, we must have X = X'. Thus, the extension A is everywhere defineq. i

In the theorem we have just proven, X is a real vector space. We now extend
the theorem to the case where X is complex.

Theorem 111.6 (complex Hahn-Banach theorem)  Let X be a complex
vector space, p a real-valued function defined on X satisfying p(ax + fy) <

|«|p(x) + |Blp(y) for all x, ye X, and o, B C with |a| + |B| =1. Let
be a complex linear functional defined on a subspace Y of X satisfying
[A(x)| < p(x) for all x € Y. Then, there exists a complex linear functional A,
defined on X, satisfying [A(x)| < p(x) for all xe X and A(x) = A(x) for all

xeY.

Proof Let £(x) = Re{A(x)}. ¢ is a real linear functional on ¥ and since

#ix) = Re{A(ix)} = Re{iA(x)} = —Im{i(x))

W (i
© $ee that 2(x) = ¢(x) — if(ix). Since ¢ is rea] linear and p(ax + (1 - “)y)if

ap(x o

obgy)in; (i(x)a)sp(y ) for a€ [0, 11,£ has a real linear extension L o all°

clearly extends f(x) (by Theorem 11L5). Define A(x) = L(x) = L(¥.

A, 50 A iy o] and is real linear. Moreover, A(ix) = L(ix) 1/
4150 complex linear, T, complete tl;e proof, we need 0

o

o]

§¢
§¢
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HL3 The H-hn—!-nleh theorem n
that |A(X)| < p(x). First
» Note th == 2
6 = Arg{A(x)} and yge the fact that I:: 1{ (fx[), —\.vz(:ge ‘ttl; Ital e
e ’ a
-uA(x) - A(e—lax) - L(e-ux)
SPEx) = px)

[A(x)] = ¢

Corollary 1 Let

X be a nor :
an element of Y* Tpe, there er:ies(tjslmear SPace, Y a subspace of X, and 1
[Allxe = [1A]lys.

Proof Choose p(x) = IAllysllx|| ang apply the aboye theorems. §

Corollary 2 Let y be an

element of 3 p,
is a nonzero A € X* sych tha ormed ]

inear space XT
tA(y) = ”/\llx-llyll. p hen there

Proof Let Y be the subspace consisting of a|] s¢

. alar multiples of y and ¢ fi
ay) = alyll. By using Corollary i, ¢s of y and define

3 ig(nging A to all of X. But, sinc:?{(y) \:e"c.'Tln construct A with IAL =4} ex-
y = WVl IAl = 1 and therefore
| AD) = Allxly) g
d Corollary 3  Let Z be a subspace of a normed linear space X and lp

suppose that y is an element of X whose distance from 7 is d. Then there

edsis a A € X* 50 that |A|l < 1, AG) = d, and Az) = 0 for all 3 in 5
o The proof of the third corollary is left to the reader (Problem 10). To show ;
; how useful these corollaries are we prove the following general theorem. ‘;
% |
18 Theorem ML.7  Let X be a Banach space. If X* is separable, then X is
A, separable.
all

Proof Let {4,} be a dense set in X*. Choose X, € X, |x,|l =1, so that

| | 4x)] 2 12,11/2

Let 9_be the set of all finite linear combinations of the {x.} yvith rational

g Ents. Since @ is countable, it is sufficient to show that 9 is dense in X.
- i thls ot dense in X, then there is a y € X\® and a linear functional 1 X*
i g 0) % 0, but A(x) = 0 for all x € @ (Corollary 3). Let {1,,} be a sub-
) = "¢ of {2,} which converges to A. Then
Py "’1 S A,,k" X* = '(/l 7N ’Lu‘)(xtlu)|

= | A, (a)| 2 14112
|




_— k — 00. Thus A =0 which is a cont
-

radje.
ond X is separable- i dictiy

o oooties [ond
which impli s de:;‘se

fore 1
There shows that the converse of this theorep, d
a0

nd £ . ; 0
The ex{lmplcla of Tl tie?) om 1117 provides a proof that ¢, is not the d&:lnot
hold. Incnge?st :e,parable and £, is not. 5
o since ¢1

jil.4 Operations on Banach spaces

We have already seen se_veral ways in which new Banach spaces can arig,
from old ones. The successive duals of a Banach space are Banach Spaces ang
the bounded operators from one Banach space to anothgr form a Banagy
space. Also, any closed linear subspace.of a Banach space is a Banach space,
There are two other ways of constructing new Banach spaces which we will
need: direct sums and quotient spaces.

Let A be an index set (not necessarily countable), and suppose that for
each a € 4, X, is a Banach space. Let

X= {{xa}aEAlxa € Xa: Z "xallx- < CI)}

acd

{xa} = ZA lxallx,

is a Banach space. It is called the direct sum of the spaces X, and is often
&T}t;;, Xh=®““.X“' We remark that the Hilbert space direct sum and
e Gt s a1t necesarythe s, For cample
while the Hilbert space directcsze:le?so;‘ C,};he Banac':h space direct sum 1:1 lfér’
of Hilbert spaces, their Hilh i adadedn ha§ iy
direct sum are iso [fAllbert space direct sum and their Banach spact
Let M be a clogg(f-’p hic in the sense of Section I1L.1.
Space, we could Writeln;ai s;x;space ff a Banach space X, If X werc a Hilber:
can sometimes take the —l DM r .The Banach space that we now defu:e
> 10 orthogonglity, 1 xp ace of M* in the Banach space case where "
X=YeM. The relation an'd Y are elements of X, we will write x~)y!
~ 15 an equivalence relation; we denote the set 0

asses b .
X Y XIM. As usual we denote the equivalence class conta®

- We d by :
efine addition apg scalar multiplication of equxvalenoc

Then X with the norm

a[x] T ﬂ[y] = [ax + ﬂy]



