M725-Functional Analysis
 Homework- Spring 2020

Prof. Andrea R. Nahmod

Problems listed are from Brezis's Book. Note that each problem in the book has several parts. Do alll of them unless otherwise noted.

- Set 1. Due date: 02/13/2020

Problems (from class):
Problem 1 Show that p is sublinear iff p is convex and $p(\alpha x)=\alpha p(x)$ for $\alpha \geq 0$
Problem 2 Let
$P:=\left\{(Z, g): Z \subseteq X\right.$ subspace,$Y \subset Z$ and $g: Z \rightarrow \mathbb{R}$ linear, $\left.g\right|_{Y}=f$ and $g \leq p$ on $\left.Z\right\}$
Endow P with the following relation: For $\left(Z_{1}, g_{1}\right),\left(Z_{2}, g_{2}\right) \in P$ let:

$$
\left(Z_{1}, g_{1}\right) \leq\left(Z_{2}, g_{2}\right) \Longleftrightarrow Z_{1} \subseteq Z_{2} \text { and } g_{2}=g_{1} \text { on } Z_{1}
$$

Check that \leq is a partial order in P.
Problem 3 For (Z_{*}, g_{*}) as defined in our proof of HB PartII (of an infinite-dimensional vector space), show that Z_{*} is a subspace and that $g_{*}: Z_{*} \rightarrow \mathbb{R}$ is linear. Hence $\left(Z_{*}, g_{*}\right) \in$ P.

Problem 4 Prove Hahn-Banach Part II with X being a normed space over \mathbb{C} (instead of \mathbb{R}), where p is the norm

Problem 5 Let X be a normed vector space (n.v.s) and let $Y \subset X$ be a subspace. Define

$$
\begin{aligned}
X^{*} & :=\left\{x^{*}: X \rightarrow \mathbb{R}, \text { linear and bounded }\right\} \\
Y^{*} & :=\left\{y^{*}: Y \rightarrow \mathbb{R}, \text { linear and bounded }\right\}
\end{aligned}
$$

(see Brezis pp. 3) Check that the dual norm, defined as:

$$
\left\|x^{*}\right\|_{X^{*}}:=\sup _{x \in X:\|x\|_{X}<1}\left|x^{*}(x)\right|
$$

is indeed a norm. Also check that $X^{*} \subseteq Y^{*}$.
$\underline{\text { Chapter } 1} 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8$.

Additional Problem: Let X be the vector space of all sequences $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers with only finitely many nonzero terms. Consider the ℓ^{1}-norm $\left\|\left\{a_{n}\right\}\right\|_{1}=\sum_{n=1}^{\infty}\left|a_{n}\right|$ and the ℓ^{2}-norm, $\left\|\left\{a_{n}\right\}\right\|_{2}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}$. Prove that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are not equivalent norms.

- Set 2. Due date: 03/26/2020

Problems (from class):

Problem 1 Let $(E,\|\cdot\|)$ be a n.v.s., and let $A \subset E, B \subset E$ be nonempty convex subsets. Assume A is closed and B is compact, and $A \cap B=\varnothing$, define

$$
C:=A-B=\{z \in C: z=x-y, \quad x \in A, y \in B\}
$$

Prove that C is closed.
Problem 2 By Hahn-Banach (first geometric form), there exists a closed hyperplane that separates $B(0, r)$ and C. Then, there exists $f \in E^{*}$, nontrivial such that

$$
f(x-y) \leq f(r z), \quad \forall x \in A, \forall y \in B, \forall z \in B(0,1)
$$

Let

$$
\varepsilon:=\frac{r}{2}\|f\|_{E^{*}}>0
$$

Show that

$$
f(x)+\varepsilon \leq f(y)-\varepsilon, \quad \forall x \in A, \forall y \in B
$$

(equivalently, you can show that $f(x-y) \leq-r\|f\|$.)
Problem 3 Consider Corollary 1.8 (Brezis pp. 8):
Corollary Let $F \subset E$ be a linear subspace such that $\bar{F} \neq E$. Then there exists some $f \in E^{*}, f \not \equiv 0$ such that

$$
\langle f, x\rangle=0 \quad \forall x \in F
$$

Remark This corollary is useful to show that a linear subspace $F \subset E$ is dense in E. Then it'd suffice to show that every continuous linear functional on E that vanishes on F must vanish everywhere on E.

Show that the remark and corollary together imply the density of F in E.

Problem 4 Let X, Y be Banach spaces. Let $T: X \rightarrow Y$ be bounded and linear. Show that if T^{*} is invertible, then T^{*} is open.

Problem 5 Let X, Y be Banach spaces. Let $T \in \mathcal{L}(X, Y)$ such that T^{*} is an injection with closed range. Prove that T is surjective.

Problem 6 (Class of $02 / 26 / 2020$) ref. Brezis, pp 39, Theorem 2.12:
Assume that $T \in \mathcal{L}(E, F)$ surjective. The following properties are equivalent:
(1) T admits a right inverse
and
(2) $N(T)=T^{-1}(0)$ admits a complement in E

In the proof of $(2) \Longrightarrow(1)$: Let L be a complement of $N(T)$. Let P be the (continuous) projection operator from E to L. Given $f \in F$, we denote by x any solution of the equation $T x=f$. Set $S f=P x$ and note that S is independent of the choice of x. It is easy to check that $S \in \mathcal{L}(F, E)$ and that $T \circ S=I_{F}$.

Explicitly check the last statement.
Problem 7 (Class of $03 / 03 / 2020$) In the example: $E=F=\ell^{1}, E^{*}=\ell^{\infty}$, consider $A \in \mathcal{L}(E, F)$ (linear, not necessarily bounded) such that $A: D(A) \rightarrow E$.

$$
D(A)=\left\{\mathbf{x}=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}: A\left(x_{n}\right)_{n \in \mathbb{N}}=n\left(x_{n}\right) \in \ell^{1}\right\}
$$

Show that $D(A)$ is dense in ℓ^{1} and A is closed.

Chapter 2: $\quad 2.3,2.4,2.5,2.6,2.7,2.8,2.9,2.10,2.11,2.12$.

- Set 3. Due date: 04/28/2020

Chapter 3: 3.1, 3.3 (use HB in one direction), 3.5, 3.9, 3.10, 3.16 (1. and 2.), 3.18, 3.22

Chapter 6: 6.1, 6.2, 6.3, 6.71)2)4), 6.8, 6.11.

