
1 The energy method

1.1 Energy for the wave equation

Let us consider an infinite string with constant linear density ρ and tension magnitude T . The wave equation

describing the vibrations of the string is then

ρutt=Tuxx, −∞<x<∞. (1.1)

Since this equation describes the mechanical motion of a vibrating string, we can compute the kinetic energy

associated with the motion of the string. Recall that the kinetic energy is 1
2
mv2. In this case the string is infinite,

and the speed differs for different points on the string. However, we can still compute the energy of small pieces

of the string, add them together, and pass to a limit in which the lengths of the pieces go to zero. This will

result in the following integral

KE=
1

2

ˆ ∞
−∞

ρu2tdx.

We will assume that the initial data vanishes outside of a large interval |x|≤R, so that the above integral is

convergent due to the finite speed of propagation. We would like to see if the kinetic energy KE is conserved

in time. For this, we differentiate the above integral with respect to time to see whether it is zero, as is expected

for a constant function, or whether it is different from zero.

d

dt
KE=

1

2
ρ

ˆ ∞
−∞

2ututtdx=

ˆ ∞
−∞

ρututtdx.

Using the wave equation (??), we can replace the ρutt by Tuxx, obtaining

d

dt
KE=T

ˆ ∞
−∞

utuxxdx.

The last quantity does not seem to be zero in general, thus the next best thing we can hope for, is to convert

the last integral into a full derivative in time. In that case the difference of the kinetic energy and some other

quantity will be conserved. To see this, we perform an integration by parts in the last integral

d

dt
KE=Tutux

∣∣∣∞
−∞
−
ˆ ∞
−∞

Tuxtuxdx.

Due to the finite speed of propagation, the endpoint terms vanish. The last integral is a full derivative, thus we have

d

dt
KE=−

ˆ ∞
−∞

Tuxtuxdx=−
d

dt

(
1

2

ˆ ∞
−∞

Tu2xdx

)
.
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Defining

PE=
1

2
T

ˆ ∞
−∞

u2xdx,

we see that

d

dt
KE=− d

dt
PE, or

d

dt
(KE+PE)=0.

The quantity E=KE+PE is then conserved, which is the total energy of the string undergoing vibrations.

Notice that PE plays the role of the potential energy of a stretched string, and the conservation of energy implies

conversion of the kinetic energy into the potential energy and back without a loss.

Another way to see that the energy

E=
1

2

ˆ ∞
−∞

(ρu2t+Tu
2
x)dx (1.2)

is conserved, is to multiply equation (??) by ut and integrate with respect to x over the real line.

0=

ˆ ∞
−∞

ρuttutdx−
ˆ ∞
−∞

Tuxxutdx.

The first integral above is a full derivative in time. Integrating by parts in the second term, and realizing that

the subsequent integral is a full derivative as well, while the boundary terms vanish, we obtain the identity

d

dt

(
1

2

ˆ ∞
−∞

ρu2t+Tu
2
xdx

)
=0,

which is exactly the conservation of total energy.

The conservation of energy provides a straightforward way of showing that the solution to an IVP associated

with the linear equation is unique. We demonstrate this for the wave equation next, while a similar procedure

will be applied to establish uniqueness of solutions for the heat IVP in the next section.

Example 1.1. Show that the initial value problem
utt−c2uxx=f(x,t) for−∞<x<+∞,

u(x,0)=φ(x), ut(x,0)=ψ(x),

(1.3)

has a unique solution.

Arguing from the inverse, let as assume that the IVP (??) has two distinct solutions, u and v. But then their
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difference w=u−v will solve the homogeneous wave equation, and will have the initial data

w(x,0)=u(x,0)−v(x,0)=φ(x)−φ(x)≡0,

wt(x,0)=ut(x,0)−vt(x,0)=ψ(x)−ψ(x)≡0.

Hence the energy associated with the solution w at time t=0 is

E[w](0)=
1

2

ˆ ∞
−∞

[(wt(x,0))
2+c2(wx(x,0))

2]dx=0

This differs from the energy defined above by a constant factor of 1/ρ (recall that T/ρ=c2), and is thus still

a conserved quantity. It will subsequently be zero at any later time as well. Thus,

E[w](t)=
1

2

ˆ ∞
−∞

[(wt(x,t))
2+c2(wx(x,t))

2]dx=0, ∀t.

But since the integrand in the expression of the energy is nonnegative, the only way the integral can be zero,

is if the integrand is uniformly zero. That is,

∇w(t,x)=(wt(x,t),wx(x,t))=0, ∀x,t.

This implies that w is constant for all values of x and t, but since w(x,0)≡0, the constant value must be zero. Thus,

u(x,t)−v(x,t)=w(x,t)≡0,

which is in contradiction with our initial assumption that u and v are different. This implies that the solution

to the IVP (??) is unique.

The procedure used in the last example, called the energy method, is quite general, and works for other linear

evolution equations possessing a conserved (or decaying) positive definite energy. The heat equation, considered

next, is one such case.

1.2 Conclusion

Using the energy motivated by the vibrating string model behind the wave equation, we derived a conserved

quantity, which corresponds to the total energy of motion for the infinite string. This positive definite quantity

was then used to prove uniqueness of solution to the wave IVP via the energy method, which essentially asserts

that zero initial total energy precludes any (nonzero) dynamics. A similar approach was used to prove uniqueness

for the heat IBVP, concluding that zero initial heat implies steady zero temperatures at later times.
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