Math 421 Cauchy-Riemann Eq’ns Polar Form 10/15/04

For a complex function f, consider its polar form
f(r ew) =U(r,0)+iV(r,0).

Theorem 1. If f is differentiable at the point zy = roe'%,
then:
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e the first-order partial derivatives exist at (rg,00), and
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Theorem 2. If
o [ is continuous on a neighborhood of the point zy = rye'%,
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e the first-order partial derivatives exist on a neighbor-

hood of (ro, 6p),
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e these partial derivatives are continuous at (ro,6p), and
e the Cauchy-Riemann conditions (*) are satisfied at (ro,6)),

then f is differentiable at zy, and the deriwvative of f at that z = zy s given
by
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where in these last formulas (r,0) = (ro,00) and the partial derivatives are
all evaluated at (r,0) = (ro,6).



