Math 421 Cauchy-Riemann Eq'ns Polar Form 10/15/04

For a complex function f, consider its polar form

$$f(r e^{i\theta}) = U(r, \theta) + i V(r, \theta).$$

Theorem 1. If f is differentiable at the point $z_0 = r_0 e^{i\theta_0}$, then:

- the first-order partial derivatives $\frac{\partial U}{\partial r}, \frac{\partial U}{\partial \theta}, \frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta}$ exist at (r_0, θ_0) , and
- at that (r_0, θ_0) they satisfy the Cauchy-Riemann conditions

$$\begin{cases} \frac{\partial U}{\partial r} &= \frac{1}{r} \frac{\partial V}{\partial \theta} \\ \frac{\partial V}{\partial r} &= -\frac{1}{r} \frac{\partial U}{\partial \theta} \end{cases}$$
(*)

Theorem 2. If

- f is continuous on a neighborhood of the point $z_0 = r_0 e^{i \theta_0}$,
- the first-order partial derivatives $\frac{\partial U}{\partial r}, \frac{\partial U}{\partial \theta}, \frac{\partial V}{\partial r}, \frac{\partial V}{\partial \theta}$ exist on a neighborhood of (r_0, θ_0) ,
- these partial derivatives are continuous at (r_0, θ_0) , and
- the Cauchy-Riemann conditions (*) are satisfied at (r_0, θ_0) ,

then f is differentiable at z_0 , and the derivative of f at that $z = z_0$ is given by

$$f'(z) = e^{-i\theta} \left[\frac{\partial U}{\partial r} + i \frac{\partial V}{\partial r} \right]$$
$$= \frac{1}{r} e^{-i\theta} \left[\frac{\partial V}{\partial \theta} - i \frac{\partial U}{\partial \theta} \right]$$

where in these last formulas $(r, \theta) = (r_0, \theta_0)$ and the partial derivatives are all evaluated at $(r, \theta) = (r_0, \theta_0)$.