Do by Friday, Oct. 13; do not hand in!

1. Do page 90, Exercise 8.
2. Do page 91, Exercise 10.
3. Do page 78, Exercise 2 (b) and (d). The domain of each function is understood to consist of all complex z for which the quotient makes sense.
4. Do page 78, Exercise 10.
5. Do page 84, Exercise 4.
6. (a) Do page 84, Exercise 6 (a). [All you need to do is to show that $\left(f_{2}(x)\right)^{3}=z$ for all z in the domain of f_{2}.]
(c) Do page 84, Exercise 6 (c).

Extra credit problems-due Wednesday, Oct. 18

1. For page 90, Exercise 8 (see $\# 1$, above), use Cardano3 to draw the given set and its image, too-first in the complex plane and then on the Riemann sphere.
2. Find explicit formulas for the stereographic projection $q: \widehat{\mathbb{C}} \rightarrow \Omega$ and its inverse $p: \Omega \rightarrow \widehat{\mathbb{C}}$. Here Ω is the Riemann sphere and $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ is the extended complex plane. Of course $q(\infty)=(0,0,1)$, the North pole and $p(0,0,1)=\infty$, so all you need to do is find formulas for $q(z)$ when $z \in \mathbb{C}$ and for $p(u, v, w)$ when $(u, v, w) \in \Omega$ with $w \neq 1$.
