Definitions about attracting and repelling-corrected

Throughout, let $f: A \rightarrow A$ be a function from a subset A of \mathbb{R} into itself.
For each nonnegative integer n, denote by f^{n} the nth iterate of f, so that also $f^{n}: A \rightarrow A$. Thus f^{0} is the identity function of A; the first iterate $f^{1}=f$; the second iterate $f^{2}=f \circ f$; etc. Then for a point $x \in A$, the set $\left\{f^{n}(x): n=0,1,2,3, \ldots\right\}$ is the orbit of x under f.
Definition 1. An $x \in A$ is called a fixed point of f when $f(x)=x$.
If x is a fixed point of f, then $f^{n}(x)=x$ for every $n=0,1,2,3, \ldots$ and so the orbit of x under f is just the one-point set $\{x\}$.
Definition 2. Let p be a fixed point of f.
Say that p attracts a point $x \in A$, and x is attracted to p when $\lim _{n \rightarrow \infty} f^{n}(x)=p$.

The basin of attraction of p is the set of all points $x \in A$ that are attracted to p.

The fixed point p (as well as its orbit $\{p\}$) is said to attract, and to be an attractor, when its basin of attraction includes $A \cap(p-\delta, p+\delta)$ for some $\delta>0$. In other words, p is an attractor when all points of A that are sufficiently close to p are attracted to p.
Definition 3. (Corrected!) Let p be a fixed point of f. Then p (as well as its orbit $\{p\})$ is said to repel, and to be a repellor, when, for some $\delta>0$, for each $x \in A \cap(p-\delta, p+\delta)$ with $x \neq p$, there is at least one power n such that $f^{n}(x) \notin(p-\delta, p+\delta)$. In other words, p repels when, for some $\delta>0$, the orbit of each point $x \in A \cap(p-\delta, p+\delta)$ (other than of p itself) does not remain in $(p-\delta, p+\delta)$.
Definition 4. A point $p \in A$ is said to be a periodic point-and its orbit is said to be a periodic orbit-if there is some integer $k \geq 2$ for which $f^{k}(p)=p$. In this case the least such k is called the (prime) period of p.

According to the preceding definition, a fixed point is not considered to be periodic. Some authors do so consider it. In any case, you could regard a fixed point as a sort of "degenerate" case of a periodic point.

Suppose p is a periodic point of f with period k. The also $f^{k+1}(p)=$ $f(p), f^{k+2}(p)=f^{2}(p)$, etc. Thus the entire orbit of p reduces to just the finite set $\left\{p, f(p), f^{2}(p), \ldots, f^{k-1}(p)\right\}$ consisting of exactly k distinct points.

If p is a periodic point of f with period k, then p is a fixed point of the k th iterate $f^{k}: A \rightarrow A$. In this case we may consider the new

Definition 5. Let p be a periodic point of f with period k. Consider instead of f the function $f^{k}: A \rightarrow A$. Say that p attracts or repels when p attracts or repels, respectively, for f^{k}. In this situation, also call the periodic orbit of p under f a periodic attractor or periodic repellor, respectively.

