
Math 331.1 Exam 2 Answers November 9, 2005

1. [4 × 5%] {How I drew the solution curves: From the ODEs, x ′(t) and y ′(t) are negative multiples of y(t) and
x(t), respectively; then the general direction of travel along the first solution curve [for x(0) = 1, y(0) = 0] is
right-to-left, and the general direction of travel along the second solution curve [for x(0) = 0, y(0) = 1] is
bottom-to-top. The second trajectory crosses the line y = x at some time t1 < 0, so the graphs of x(t) and
y(t) intersect when t = t1.}
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2. (a) [15%] From

A − λI =
[
2 − λ 1

3 4 − λ

]
obtain the characteristic polynomial

p(λ) = det(A − λI) = (2 − λ)(4 − λ) − 3 = (λ2 − 6λ + 8) − 3 = λ2 − 6λ + 5. [2%]

Then
p(λ) = (λ − 1)(λ − 5)

so that the eigenvalues of A are

λ1 = 1, λ2 = 5. [2%]

Find an eigenvector for λ1 = 1 by solving (A − λ1I)
[
x1
y1

]
=

[
0
0

]
:

[
1 1
3 3

] [
x1
y1

]
=

[
0
0

]
=⇒

{
x1 + y1 = 0

3x1 + 3y1 = 0
=⇒ y1 = −x1

Take, say, x1 = 1, so that y1 = −1. Thus an eigenvector for λ1 = 1 is V1 =
[

1
−1

]
. [2%]

Find an eigenvector for λ2 = 5 by solving (A − λ1I)
[
x2
y2

]
=

[
0
0

]
:

[−3 1
3 −1

] [
x2
y2

]
=

[
0
0

]
=⇒

{
−3x2 + y2 = 0

3x2 − y2 = 0
=⇒ y2 = 3x2

Take, say, x2 = 1, so that y2 = 3. Thus an eigenvector for λ2 = 5 is V2 =
[
1
3

]
. [2%]

Two solutions of the given system of ODEs are:

Y1(t) = eλ1tV1 = et

[
1

−1

]
=

[
et

−et

]
, Y2(t) = eλ2tV2 = e5t

[
1
3

]
=

[
e5t

3e5t

]
[2%]

{Since A is 2 × 2 and has 2 distinct eigenvalues, the theory guarantees that the vectors Y1(0) = V1 =[
1

−1

]
and Y2(0) = V2 =

[
1
3

]
are linearly independent.}

Hence the general solution is:

Y(t) = k1Y1(t) + k2Y2(t) = k1e
t

[
1

−1

]
+ k2e

5t

[
1
3

]
=

[
k1e

t + k2e
5t

−k1e
t + 3k2e

5t

]
[3%]

(b) [5%] The initial condition Y(0) =
[
5
3

]
gives

[
k1 + k2

−k1 + 3k2

]
=

[
5
3

]
which means

{
k1 + k2 = 5

−k1 + 3k2 = 3.
[2%]

Add the two equations to obtain 4k2 = 8. Then

k2 = 2, k1 = 5 − k2 = 5 − 2 = 3. [1%]

Thus the desired solution is:

Y(t) = 3Y1(t) + 2Y(t) = 3et

[
1

−1

]
+ 2e5t

[
1
3

]
=

[
3et + 2e5t

−3et + 6e5t

]
[2%]
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3. (a) [8%] The solution involved is

Y (t) = eλ1tV1 = e−t

[
1
4

]
. [2%]

Its trajectory in the (x, y)-phase plane is the part of the line through (0, 0) and (1, 4) lying in the
first quadrant—exclusive of the origin. That is, it is the open ray from the origin and passing
through (1, 4). [4%]
The direction along this curve is inward, toward the origin. [2%]

(b) [12%] {Since the eigenvalues are real with λ1 < 0 < λ2, the origin is a saddle point. The system has
straight line solutions along lines through the origin and each of the given eigenvectors. Along the line
having the direction of V1, the direction of flow is toward the origin (because the corresponding eigenvalue
λ1 < 0). Along the line having the direction of V2, the direction of flow is away from the origin (because
the corresponding eigenvalue λ2 > 0). This information is sufficient to determine the qualitative picture
for the entire phase portrait; just keep the directions on the other solution curves consistent with those
along the two special lines.}
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4. (a) [12%] Variable

• y represents the predator population, and
• x represents the prey population. [6%]

The reason is that interactions between the two populations, as represented by the product x y,
increase y ′ but decrease x ′ (since the sign before x y is positive in the expression for y ′ whereas
the sign before x y is negative in the expression for x ′). [6%]

(b) [8%] The two species are competitive: they compete for the same food, territory, etc. [4%]
The reason is that interactions between the two populations, as represented by the product x y,
decrease both x ′ and y ′ (since the sign before x y is negative in the expressions for both x ′ and
y ′). [4%]
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5. (a) [8%] Let v = x ′. [2%] Then

v ′ = x ′ ′ = −5x − 2x ′ = −5x − 2v. [3%]

Thus the equivalent system of first-order ODEs is:

{
x ′ = v

v ′ = −5x − 2v
[3%]

This could be written in matrix form as

Y ′ =
[

0 1
−5 −2

]
Y where Y =

[
x
v

]
.

(b) [12%] Either of two methods may be used.
Method 1: guess-and-check for given 2nd-order ODE.
Try a solution of the form

x(t) = est [2%]

and determine the constant s. From theory, s is a root of the quadratic equation

s2 + 2s + 5 = 0. [2%]

The roots of this equation are

s =
−2 ± √

22 − 4 · 5
2

=
−2 ± √−16

2
=

−2 ± 4i

2
= −1 ± 2i. [2%]

Use s = −1 + 2i—which is complex—to get from Euler’s formula the complex solution

x(t) = e(−1+2i)t = e−t(cos 2t + i sin 2t). [2%]

The real and complex parts of this solution are also solutions; these are

x1(t) = e−t cos 2t, x2(t) = e−t sin 2t. [2%]

Easy way to obtain the desired solution from x1(t) and x2(t): Notice that x2(0) = 0; further,

x′
2(t) = 2e−t cos 2t − e−t sin 2t,

so that x′
2(0) = 2. Hence the desired solution is x(t) = x2(t), that is:

x(t) = e−t sin 2t [2%]

Alternate way to obtain the desired solution form x1(t) and x2(t): The general solution is

x(t) = k1 x1(t) + k2 x2(t) = k1 e−t cos 2t + k2 e−t sin 2t.

The initial condition x(0) = 0 gives k1 = 0, so what’s left is

x(t) = k2 e−t sin 2t.

Then x ′ (t) = 2 k2 e−t sin 2t. The initial condition x ′ (0) = 2 now gives 2 k2 = 2, that is, k2 = 1.
Hence the desired solution is x(t) = x2(t) = e−t sin 2t.
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Method 2: eigenvalue/eigenvector method for system of 1st-order ODEs.
The equivalent system of 1st-order ODEs is Y ′ = AY where A =

[ 0 1
−5 −2

]
. From A − λI =[ −λ 1

−5 −2−λ

]
obtain the characteristic polynomial

det(A − λI) = −λ(−2 − λ) − (−5) = λ2 + 2λ + 5

whose roots are

λ =
−2 ± √

22 − 4 · 5
2

=
−2 ± √−16

2
=

−2 ± 4i

2
= −1 ± 2i

so that the eigenvalues of A are

λ1 = −1 + 2i, λ2 = −1 − 2i. [3%]

Find an eigenvector for λ1 = −1 + 2i by solving (A − λ1I)
[
x1
y1

]
=

[
0
0

]
:

[
1 − 2i 1
−5 −1 − 2i

] [
x1
y1

]
=

[
0
0

]
=⇒

{
(1 − 2i)x1 + y1 = 0

−5x1 + (−1 − 2i)y1 = 0

(These two linear algebraic equations here are redundant; the second is −1 − 2i times the first.)
The general solution of these two linear algebraic equations is

y1 = (−1 + 2i)x1.

Take, say, x1 = 1, so that y1 = −1 + 2i. Thus an eigenvector corresponding to λ1 = −1 + 2i is

V1 =
[

1
−1 + 2i

]
. [2%]

Thus a complex solution of the system of ODEs is

Yc(t) = e−λ1tV1 = e(−1+2i)t
[

1
−1 + 2i

]
= e−te2ti

[
1

−1 + 2i

]

= e−t(cos 2t + i sin 2t)
[

1
−1 + 2i

]
= e−t

[
cos 2t + i sin 2t

(− cos 2t − 2 sin 2t) + i(2 cos 2t − sin 2t)

]

= e−t

[
cos 2t

− cos 2t − 2 sin 2t

]
+ ie−t

[
sin 2t

2 cos 2t − sin 2t

]
[3%]

Then the system also has as real-valued solutions the real and imaginary parts

Yre(t) = e−t

[
cos 2t

− cos 2t − 2 sin 2t

]
, Yim(t) = e−t

[
sin 2t

2 cos 2t − sin 2t

]
. [2%]

Easy way to obtain the desired solution from Yre(t) and Yim(t): Since Yim(0) =
[
0
2

]
, immediately

[
x(t)
x ′(t)

]
=

[
x(t)
v(t)

]
= Yim(t) = e−t

[
sin 2t

2 cos 2t − sin 2t

]

yields the desired solution
x(t) = e−t sin 2t [2%]
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Alternate way to obtain the desired solution from Yre(t) and Yim(t): The general solution of the
system of ODEs is

Y(t) = k1Yre(t) + k2Yim(t) = k1e
−t

[
cos 2t

− cos 2t − 2 sin 2t

]
+ k2e

−t

[
sin 2t

2 cos 2t − sin 2t

]

= e−t

[
k1 cos 2t + k2 sin 2t

k1(− cos 2t − 2 sin 2t) + k2(2 cos 2t − sin 2t)

]
.

The initial condition is

Y(0) =
[
x(0)
v(0)

]
=

[
x(0)
x ′(0)

]
=

[
0
2

]
.

Then {
k1 = 0

−k1 + 2k2 = 2,
=⇒ k1 = 0, k2 = 1.

Thus the desired solution to the 1st-order system is

Y(t) = 0Yre(t) + 1Yim(t) = e−t

[
sin 2t

2 cos 2t − sin 2t

]
=

[
e−t sin 2t

e−t(2 cos 2t − sin 2t)

]
.

This means that the desired solution to the given 2nd-order ODE is:

x(t) = e−t sin 2t
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6. (a) [8%] Equilibrium points of the given system of nonlinear ODEs are the solutions (x, y) of the
system of algebraic equations: {

x(5 − x − y) = 0
y(−2 + x) = 0

[2%] (*)

To solve these equations, consider several cases:
Case 1: x �= 0 and y �= 0. In this case, equilibrium points are solutions of{

5 − x − y = 0
−2 + x = 0,

in other words, x = 2 and so y = 5 − x = 5 − 2 = 3. Thus (2, 3) is an equilibrium point.
Case 2: x �= 0 but y = 0. In this case, equations (*) reduce to the single equation

x(5 − x) = 0,

which has solutions x = 0, x = 5. The solution x = 0 is inconsistent with the assumption in this
case that x �= 0. Hence the only relevant solution is x = 5. Thus (5, 0) is an equilibrium point.
Case 3: x = 0 but y �= 0. In this case, equations (*) reduce to the single equation

−2 = 0

which has no solutions. Thus this case provides no equilibrium points.
Case 4: x = 0 and y = 0. This case provides the equilibrium point (0, 0.
Thus there are three equilibrium points:

(0, 0), (5, 0), (2, 3) [6%]
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(b) [12%] {How I selected the points and drew the trajectory: Notice that x starts for t = 0 at x = 3, rises to
a maximum ≈ 4 at a time when y ≈ 1.2, falls to a minimum ≈ 1.8 when y ≈ 3.2, rises to a local maximum
≈ 2.1 when y ≈ 2.9, and finally levels out roughly to 2. Likewise, y starts for t = 0 at y = 0.5, rises to
a maximum ≈ 3.5 when x ≈ 2, falls to a local minimum ≈ 2.8 when x ≈ 2, rises to a local maximum
≈ 3.1 when x ≈ 2.1, and finally levels out roughly to 3. These are the points marked on the trajectory
below, with the corresponding points marked on the graphs of x(t) and y(t). Thus, as shown below, as
t → ∞ the point (x(t), y(t) spirals toward and counterclockwise around the equilibrium point
(2, 3) —but does not actually reach it.}
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