Math 300.2 Problem Set 9 Answers Fall, 2007
1. [Exercise 2.5.4 (1).]

(a) Yes, 41 € [5]12 because 5 = 41 (mod 12). And 5 € [41];2 because 41 = 5
(mod 12).

(b) 36 ¢ [5]12 because 5 # 36 (mod 12). And 5 ¢ [36]12 because 36 # 5 (mod 12).

(¢) For modulus m = 12: For all integers a and b:
belaly, < acé€[bn

More generally, for any modulus m, the same equivalence holds.
Proof (optional): Immediate from Lemma 2.5.3. Or prove it directly:

belalm <= a=0b (mod m) (definition of congruence class)
<= b=a (modm) (symmetry of congruence relation)
< a € [bn (definition of congruence class)

2. [Exercise 2.5.15 (4).] Let A, B,C € Z,,. Pick representatives a, b, c of A, B, C, respec-
tively. Then

3. [Exercise 2.5.16 (d)—(f).]

(d) Yes, there are such elements because, for example, [2] - [6] = [0] but [2] # [0]
and [6] # [0]. Another example: [3]-[4] = [0] but [3] # [0] and [4] # [0]; by
commutativity, other examples are [6] - [2] = [0] and [4] - [3]. There are no others
besides these four examples. Indeed, for 0 < a <12 and 0 < b < 12,ifa-b=0
(mod 12) and if a is relatively prime to 12, then b =0 (mod 12), and aside from
2, 3, 4, and 6, no other integers from 1 to 11 are relatively prime to 12.

(e) In Zs there are no such elements. In fact, for integers a,b € {0, 1,2, 3,4}, to say
[a] - [b] = [0] but [a] # [0] and [b] # [0] in Z5 means that 5 | ab but 5{a and 51b.
But this is impossible because 5 is prime.

(f) Generalization: Integer m is composite if and only if there are elements A, B €

Ly, with A- B = [0] but A # [0] and B # [0].
Proof: If m is prime, the same reasoning applied to the case m = 5 works. So
suppose m is not prime. Then m = a b for some integers a,b with 1 < a,b < m.
Then m | ab but m+ta and mtb, so that [a] - [b] = [0] in Z,, but [a] # [0] and
] # [0]. O

4. [Exercise C.1.3 (b), (c), and (k).]



(b) This is not an equivalence relation because it is not symmetric. In fact, 1 ~ 2
because 2 =2 -1 but 2 # 1 because 1 # k - 2 for all nonzero integers k.

(c) This is an equivalence relation. In fact, it is reflexive because |z| = |z| for all
x € R. It is symmetric because if x,y € R with |z| = |y|, then also |y| = |z|.
and it is transitive because if x,y,z € R with |z| = |y| and |y| = |z], then also
|| = [2]-

(k) This is not an equivalence relation because it is not reflexive: @ € P (R) yet
P NY = so that @ ¢ @.

It is tempting to try to make the relation an equivalence relation by deleting the
troublesome set @, that is, to replace P (R) by X = P (R) \ {@}. However, the
restriction of the given relation just to elements of this smaller set X is still not
an equivalence relation because it is not transitive (although it is reflexive and
symmetric). In fact, there are lots of examples of nonempty subsets A, B, C' of
R for which ANB # @, BNC # @, and yet ANC = @; for example, take
A={1}, B={1,2}, and C = {2}.

5. [Prop. C.1.8.] Let A and B be equivalence classes under ~. Choose representatives a
and b of A and B, respectively, so that A = [a] and B = [b].

Assume AN B # @&. Then there exists some z € AN B. By part (3) of the lemma,
[2] = [a] and [z] = [b], that is, [z2] = A and [z2] = B. Then A=B. [

6. [Exercise C.1.9 (2) (a).]

o reflexive: If (m,n) € X, then (m,n) ~ (m,n) because mn = nm.

o symmetric: Let (m,n),(i,j) € X. If (m,n) ~ (i,7), then mj = ni so that
in = jm which means (i,7) ~ (m,n).

e transitive: Let (m,n), (i,7),p,q € X with (m,n) ~ (i,j) and (i,5) ~ (p,q). Then
mj=mniand iq=jp.

Multiply the first equality by ¢ and in the result use the second equality to
substitute for i g:

mjq=mniqg=mnjp.
Now j # 0, so divide by j to obtain
mq=np.
This means that (m,n) ~ (p, q).
For integers m,n with n # 0, the equivalence class [(m,n)] of course is given by
[(m,n)] ={(i,j) EZXZ* :mj=mni}.
It is more illuminating, however, to think of this as:

) ={ Gpezxz ™ =1



7. [Exercise C.2.6 (b).] First, the collection A is a partition of X: Obviously no member
of Ais empty. If z =0 or z = 1, then 2 € {0,1} € A, whereas if x € [0,1] and if
x # 0,1, then x € {z} € A; thus each z € X belongs to some member of 4. Finally,
{0,1}n{t} =2 if0<t<1,and {t} N{s} =2 if 0 < t,s <1 with ¢ # s; thus A is
pairwise disjoint.
The definition of the equivalence relation ~ 4 is that by = ~ 4 y if and only if there
exists some A € A with z,y € A. For the given partition A, this means:

x~gy <= x,y € {0,1} or z,y € {t} for some t with 0 < ¢ < 1,
in other words,
x~pqgy<s—=zr=y=0orz=y=lor(z=0&y=1or(z=1&y=0or0<z=y<l1.
This may be simplified to:
r~gy<=(z=0&y=1or(x=1&y=0)or (x=y).

You could express this in words: Two numbers in [0, 1] are equivalent for ~ 4 when
either they are identical or else one of them is 0 and the other is 1. (Put most simply,
this equivalence relation “identifies” 0 with 1.)

8. [Exercise 1, Reals.]

(a) Let z € R and assume 0 < z. Since x =0+ 2z =0 — (—z), then 0 < 0 — (—x).
This means —z < 0.

(b) Let z,y € R and assume z < y. Then 0 < y — z. Now (—z) — (—y) =y — x, so
0 < (—z) — (—y). This mean —y < —z.

(c) Exactly one of the alternatives cases 0 < 1, 0 =1, and 1 < 0 holds. Now 0 # 1.
Just suppose 1 < 0. From (b), —0 < —1, that is, 0 < —1. From the third
property of < above, 0 < (—1)(—1). But (—1)(—1) = 1, so that 0 < 1, which is
impossible when also 1 < 0.

9. [Prop. 2 proof details, Reals.]

(a) [Why is n < ¢ < n+ 1?] By definition, k1 > ¢ and, for each k € N, k < k; =
k < c. Now ky # 0 because ¢ > 0. Hence k1 > 1. Thus n = k; — 1 € N. Since
n < k1, then n < c¢. And of course n +1 = k1 > c.

(b) [Finish proof of Case (ii).] If m = —¢, then —m = ¢ < —m + 1. Suppose
now m # —c, so that m < —c < m+ 1. Then —m — 1 < ¢ < m, and so
-m—1<c¢<(-m—1)+1.

(c¢) [Uniqueness.] Suppose m and n are both integers with m < ¢ < m + 1 and
n < c<n+1. Just suppose m # n, say m <n. Then m+1 <n,and som+1 <
n<c<n4+1l Butalsom<c<m+1l,sothat m<c<m+1l<n<ec<n+l.
Thus ¢ < m+ 1 and ¢ > m + 1, which is impossible.

10. [Re Theorem 3 proof, Reals.]



(a) We are given that a < b. So if 0 < a is not the case, we are left with one of the

following cases:
Case (i): a < b < 0. In this case 0 < —b < —a. From the already-proved case,
there exists ¢ € Q with —b < ¢ < —a. Then —g € Q and a < —q < b.

Case(ii): a < 0 < b. From the already-proved case, there exists ¢ € Q with
0 < g<b. Then a < g < b also.

By Proposition 2, there exists an integer k with £ < nc < £+ 1. Now nc > 0
because n > 0 and ¢ > 0. Thus £ > 0. Let m = k+ 1. Then m € N and
m—-—1=k<nc<k+1=m.



