
Math 300.2 Problem Set 9 Answers Fall, 2007

1. [Exercise 2.5.4 (1).]

(a) Yes, 41 ∈ [5]12 because 5 ≡ 41 (mod 12). And 5 ∈ [41]12 because 41 ≡ 5
(mod 12).

(b) 36 /∈ [5]12 because 5 6≡ 36 (mod 12). And 5 /∈ [36]12 because 36 6≡ 5 (mod 12).

(c) For modulus m = 12: For all integers a and b:

b ∈ [a]m ⇐⇒ a ∈ [b]m

More generally, for any modulus m, the same equivalence holds.

Proof (optional): Immediate from Lemma 2.5.3. Or prove it directly:

b ∈ [a]m ⇐⇒ a ≡ b (mod m) (definition of congruence class)

⇐⇒ b ≡ a (mod m) (symmetry of congruence relation)

⇐⇒ a ∈ [b]m (definition of congruence class)

2. [Exercise 2.5.15 (4).] Let A, B, C ∈ Zm. Pick representatives a, b, c of A, B, C, respec-
tively. Then

A · (B + C) = [a] · ([b] + [c])

= [a] · [b + c]

= [a · (b + c)]

= [a · b + a · c]

= [a · b] + [a · c]

= [a] · [b] + [a] · [c] = A · B + A · C.

3. [Exercise 2.5.16 (d)–(f).]

(d) Yes, there are such elements because, for example, [2] · [6] = [0] but [2] 6= [0]
and [6] 6= [0]. Another example: [3] · [4] = [0] but [3] 6= [0] and [4] 6= [0]; by
commutativity, other examples are [6] · [2] = [0] and [4] · [3]. There are no others
besides these four examples. Indeed, for 0 < a < 12 and 0 < b < 12, if a · b ≡ 0
(mod 12) and if a is relatively prime to 12, then b ≡ 0 (mod 12), and aside from
2, 3, 4, and 6, no other integers from 1 to 11 are relatively prime to 12.

(e) In Z5 there are no such elements. In fact, for integers a, b ∈ {0, 1, 2, 3, 4}, to say
[a] · [b] = [0] but [a] 6= [0] and [b] 6= [0] in Z5 means that 5 | ab but 5 ∤ a and 5 ∤ b.
But this is impossible because 5 is prime.

(f) Generalization: Integer m is composite if and only if there are elements A, B ∈
Zm with A · B = [0] but A 6= [0] and B 6= [0].

Proof: If m is prime, the same reasoning applied to the case m = 5 works. So
suppose m is not prime. Then m = a b for some integers a, b with 1 < a, b < m.
Then m | a b but m ∤ a and m ∤ b, so that [a] · [b] = [0] in Zm but [a] 6= [0] and
[b] 6= [0].

4. [Exercise C.1.3 (b), (c), and (k).]
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(b) This is not an equivalence relation because it is not symmetric. In fact, 1 ∼ 2
because 2 = 2 · 1 but 2 6∼ 1 because 1 6= k · 2 for all nonzero integers k.

(c) This is an equivalence relation. In fact, it is reflexive because |x| = |x| for all
x ∈ R. It is symmetric because if x, y ∈ R with |x| = |y|, then also |y| = |x|.
and it is transitive because if x, y, z ∈ R with |x| = |y| and |y| = |z|, then also
|x| = |z|.

(k) This is not an equivalence relation because it is not reflexive: ∅ ∈ P (R) yet
∅ ∩ ∅ = ∅ so that ∅ 6∼ ∅.

It is tempting to try to make the relation an equivalence relation by deleting the
troublesome set ∅, that is, to replace P (R) by X = P (R) \ {∅}. However, the
restriction of the given relation just to elements of this smaller set X is still not
an equivalence relation because it is not transitive (although it is reflexive and
symmetric). In fact, there are lots of examples of nonempty subsets A, B, C of
R for which A ∩ B 6= ∅, B ∩ C 6= ∅, and yet A ∩ C = ∅; for example, take
A = {1}, B = {1, 2}, and C = {2}.

5. [Prop. C.1.8.] Let A and B be equivalence classes under ∼. Choose representatives a
and b of A and B, respectively, so that A = [a] and B = [b].

Assume A ∩ B 6= ∅. Then there exists some z ∈ A ∩ B. By part (3) of the lemma,
[z] = [a] and [z] = [b], that is, [z] = A and [z] = B. Then A = B.

6. [Exercise C.1.9 (2) (a).]

• reflexive: If (m, n) ∈ X, then (m, n) ∼ (m, n) because m n = n m.

• symmetric: Let (m, n), (i, j) ∈ X. If (m, n) ∼ (i, j), then m j = n i so that
i n = j m which means (i, j) ∼ (m, n).

• transitive: Let (m, n), (i, j), p, q ∈ X with (m, n) ∼ (i, j) and (i, j) ∼ (p, q). Then

m j = n i and i q = j p.

Multiply the first equality by q and in the result use the second equality to
substitute for i q:

m j q = n i q = n j p.

Now j 6= 0, so divide by j to obtain

m q = n p.

This means that (m, n) ∼ (p, q).

For integers m, n with n 6= 0, the equivalence class [(m, n)] of course is given by

[(m, n)] = { (i, j) ∈ Z × Z∗ : m j = n i }.

It is more illuminating, however, to think of this as:

[(m, n)] =

{

(i, j) ∈ Z × Z∗ :
m

n
=

i

j

}
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7. [Exercise C.2.6 (b).] First, the collection A is a partition of X: Obviously no member
of A is empty. If x = 0 or x = 1, then x ∈ {0, 1} ∈ A, whereas if x ∈ [0, 1] and if
x 6= 0, 1, then x ∈ {x} ∈ A; thus each x ∈ X belongs to some member of A. Finally,
{0, 1} ∩ {t} = ∅ if 0 < t < 1, and {t} ∩ {s} = ∅ if 0 < t, s < 1 with t 6= s; thus A is
pairwise disjoint.

The definition of the equivalence relation ∼A is that by x ∼A y if and only if there
exists some A ∈ A with x, y ∈ A. For the given partition A, this means:

x ∼A y ⇐⇒ x, y ∈ {0, 1} or x, y ∈ {t} for some t with 0 < t < 1,

in other words,

x ∼A y ⇐⇒ x = y = 0 or x = y = 1 or (x = 0 & y = 1) or (x = 1 & y = 0) or 0 < x = y < 1.

This may be simplified to:

x ∼A y ⇐⇒ (x = 0 & y = 1) or (x = 1 & y = 0) or (x = y).

You could express this in words: Two numbers in [0, 1] are equivalent for ∼A when
either they are identical or else one of them is 0 and the other is 1. (Put most simply,
this equivalence relation “identifies” 0 with 1.)

8. [Exercise 1, Reals.]

(a) Let x ∈ R and assume 0 < x. Since x = 0 + x = 0 − (−x), then 0 < 0 − (−x).
This means −x < 0.

(b) Let x, y ∈ R and assume x < y. Then 0 < y − x. Now (−x) − (−y) = y − x, so
0 < (−x) − (−y). This mean −y < −x.

(c) Exactly one of the alternatives cases 0 < 1, 0 = 1, and 1 < 0 holds. Now 0 6= 1.
Just suppose 1 < 0. From (b), −0 < −1, that is, 0 < −1. From the third
property of < above, 0 < (−1)(−1). But (−1)(−1) = 1, so that 0 < 1, which is
impossible when also 1 < 0.

9. [Prop. 2 proof details, Reals.]

(a) [Why is n ≤ c < n + 1?] By definition, k1 > c and, for each k ∈ N, k < k1 =⇒
k ≤ c. Now k1 6= 0 because c > 0. Hence k1 ≥ 1. Thus n = k1 − 1 ∈ N. Since
n < k1, then n ≤ c. And of course n + 1 = k1 > c.

(b) [Finish proof of Case (ii).] If m = −c, then −m = c < −m + 1. Suppose
now m 6= −c, so that m < −c < m + 1. Then −m − 1 < c < m, and so
−m − 1 ≤ c < (−m − 1) + 1.

(c) [Uniqueness.] Suppose m and n are both integers with m ≤ c < m + 1 and
n ≤ c < n+1. Just suppose m 6= n, say m < n. Then m+1 ≤ n, and so m+1 ≤
n < c < n+1. But also m ≤ c < m+1, so that m ≤ c < m+1 ≤ n < c < n+1.
Thus c < m + 1 and c > m + 1, which is impossible.

10. [Re Theorem 3 proof, Reals.]
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(a) We are given that a < b. So if 0 ≤ a is not the case, we are left with one of the
following cases:

Case (i): a < b < 0. In this case 0 < −b < −a. From the already-proved case,
there exists q ∈ Q with −b < q < −a. Then −q ∈ Q and a < −q < b.

Case(ii): a < 0 < b. From the already-proved case, there exists q ∈ Q with
0 < q < b. Then a < q < b also.

(b) By Proposition 2, there exists an integer k with k ≤ nc < k + 1. Now nc > 0
because n > 0 and c > 0. Thus k ≥ 0. Let m = k + 1. Then m ∈ N and
m − 1 = k ≤ nc < k + 1 = m.
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