Math 300.2

- 1. [Exercise 2.5.4(1).]
 - (a) Yes, $41 \in [5]_{12}$ because $5 \equiv 41 \pmod{12}$. And $5 \in [41]_{12}$ because $41 \equiv 5 \pmod{12}$.
 - (b) $36 \notin [5]_{12}$ because $5 \not\equiv 36 \pmod{12}$. And $5 \notin [36]_{12}$ because $36 \not\equiv 5 \pmod{12}$.
 - (c) For modulus m = 12: For all integers a and b:

 $b \in [a]_m \iff a \in [b]_m$

More generally, for any modulus m, the same equivalence holds. *Proof* (optional): Immediate from Lemma 2.5.3. Or prove it directly:

$b \in [a]_m$	\iff	$a \equiv b$	\pmod{m}	(definition of congruence class)
	\iff	$b \equiv a$	\pmod{m}	(symmetry of congruence relation)
	\iff	$a \in [b]_n$	n	(definition of congruence class)

2. [Exercise 2.5.15 (4).] Let $A, B, C \in \mathbb{Z}_m$. Pick representatives a, b, c of A, B, C, respectively. Then

$$A \cdot (B + C) = [a] \cdot ([b] + [c]) = [a] \cdot [b + c] = [a \cdot (b + c)] = [a \cdot b + a \cdot c] = [a \cdot b] + [a \cdot c] = [a] \cdot [b] + [a] \cdot [c] = A \cdot B + A \cdot C$$

3. [Exercise 2.5.16 (d)-(f).]

1

- (d) Yes, there are such elements because, for example, $[2] \cdot [6] = [0]$ but $[2] \neq [0]$ and $[6] \neq [0]$. Another example: $[3] \cdot [4] = [0]$ but $[3] \neq [0]$ and $[4] \neq [0]$; by commutativity, other examples are $[6] \cdot [2] = [0]$ and $[4] \cdot [3]$. There are no others besides these four examples. Indeed, for 0 < a < 12 and 0 < b < 12, if $a \cdot b \equiv 0$ (mod 12) and if a is relatively prime to 12, then $b \equiv 0 \pmod{12}$, and aside from 2, 3, 4, and 6, no other integers from 1 to 11 are relatively prime to 12.
- (e) In \mathbb{Z}_5 there are *no* such elements. In fact, for integers $a, b \in \{0, 1, 2, 3, 4\}$, to say $[a] \cdot [b] = [0]$ but $[a] \neq [0]$ and $[b] \neq [0]$ in \mathbb{Z}_5 means that $5 \mid ab$ but $5 \nmid a$ and $5 \nmid b$. But this is impossible because 5 is prime.
- (f) Generalization: Integer m is composite if and only if there are elements $A, B \in \mathbb{Z}_m$ with $A \cdot B = [0]$ but $A \neq [0]$ and $B \neq [0]$. *Proof:* If m is prime, the same reasoning applied to the case m = 5 works. So suppose m is not prime. Then m = ab for some integers a, b with 1 < a, b < m. Then $m \mid ab$ but $m \nmid a$ and $m \nmid b$, so that $[a] \cdot [b] = [0]$ in \mathbb{Z}_m but $[a] \neq [0]$ and $[b] \neq [0]$. \Box
- 4. [Exercise C.1.3 (b), (c), and (k).]

- (b) This is not an equivalence relation because it is not symmetric. In fact, $1 \sim 2$ because $2 = 2 \cdot 1$ but $2 \not\sim 1$ because $1 \neq k \cdot 2$ for all nonzero integers k.
- (c) This is an equivalence relation. In fact, it is reflexive because |x| = |x| for all $x \in \mathbb{R}$. It is symmetric because if $x, y \in \mathbb{R}$ with |x| = |y|, then also |y| = |x|. and it is transitive because if $x, y, z \in \mathbb{R}$ with |x| = |y| and |y| = |z|, then also |x| = |z|.
- (k) This is not an equivalence relation because it is not reflexive: Ø ∈ P(ℝ) yet Ø ∩ Ø = Ø so that Ø ≁ Ø.
 It is tempting to try to make the relation an equivalence relation by deleting the troublesome set Ø, that is, to replace P(ℝ) by X = P(ℝ) \ {Ø}. However, the restriction of the given relation just to elements of this smaller set X is still not an equivalence relation because it is not transitive (although it is reflexive and symmetric). In fact, there are lots of examples of nonempty subsets A, B, C of ℝ for which A ∩ B ≠ Ø, B ∩ C ≠ Ø, and yet A ∩ C = Ø; for example, take A = {1}, B = {1,2}, and C = {2}.
- 5. [Prop. C.1.8.] Let A and B be equivalence classes under ~. Choose representatives a and b of A and B, respectively, so that A = [a] and B = [b].
 Accurrent A > B (A Then there exists some x < A > B. Pu part (2) of the larger

Assume $A \cap B \neq \emptyset$. Then there exists some $z \in A \cap B$. By part (3) of the lemma, [z] = [a] and [z] = [b], that is, [z] = A and [z] = B. Then A = B. \Box

- 6. [Exercise C.1.9 (2) (a).]
 - reflexive: If $(m, n) \in X$, then $(m, n) \sim (m, n)$ because m n = n m.
 - symmetric: Let $(m, n), (i, j) \in X$. If $(m, n) \sim (i, j)$, then mj = ni so that in = jm which means $(i, j) \sim (m, n)$.
 - transitive: Let $(m, n), (i, j), p, q \in X$ with $(m, n) \sim (i, j)$ and $(i, j) \sim (p, q)$. Then

m j = n i and i q = j p.

Multiply the first equality by q and in the result use the second equality to substitute for iq:

m j q = n i q = n j p.

Now $j \neq 0$, so divide by j to obtain

m q = n p.

This means that $(m, n) \sim (p, q)$.

For integers m, n with $n \neq 0$, the equivalence class [(m, n)] of course is given by

$$[(m,n)] = \{ (i,j) \in \mathbb{Z} \times \mathbb{Z}^* : m j = n i \}.$$

It is more illuminating, however, to think of this as:

$$[(m,n)] = \left\{ (i,j) \in \mathbb{Z} \times \mathbb{Z}^* : \frac{m}{n} = \frac{i}{j} \right\}$$

7. [Exercise C.2.6 (b).] First, the collection \mathcal{A} is a partition of X: Obviously no member of \mathcal{A} is empty. If x = 0 or x = 1, then $x \in \{0, 1\} \in \mathcal{A}$, whereas if $x \in [0, 1]$ and if $x \neq 0, 1$, then $x \in \{x\} \in \mathcal{A}$; thus each $x \in X$ belongs to some member of \mathcal{A} . Finally, $\{0, 1\} \cap \{t\} = \emptyset$ if 0 < t < 1, and $\{t\} \cap \{s\} = \emptyset$ if 0 < t, s < 1 with $t \neq s$; thus \mathcal{A} is pairwise disjoint.

The definition of the equivalence relation $\sim_{\mathcal{A}}$ is that by $x \sim_{\mathcal{A}} y$ if and only if there exists some $A \in \mathcal{A}$ with $x, y \in A$. For the given partition \mathcal{A} , this means:

 $x \sim_{\mathcal{A}} y \iff x, y \in \{0, 1\} \text{ or } x, y \in \{t\} \text{ for some } t \text{ with } 0 < t < 1,$

in other words,

 $x \sim_{\mathcal{A}} y \iff x = y = 0 \text{ or } x = y = 1 \text{ or } (x = 0 \& y = 1) \text{ or } (x = 1 \& y = 0) \text{ or } 0 < x = y < 1.$

This may be simplified to:

 $x \sim_{\mathcal{A}} y \iff (x = 0 \& y = 1) \text{ or } (x = 1 \& y = 0) \text{ or } (x = y).$

You could express this in words: Two numbers in [0, 1] are equivalent for $\sim_{\mathcal{A}}$ when either they are identical or else one of them is 0 and the other is 1. (Put most simply, this equivalence relation "identifies" 0 with 1.)

- 8. [Exercise 1, *Reals.*]
 - (a) Let $x \in \mathbb{R}$ and assume 0 < x. Since x = 0 + x = 0 (-x), then 0 < 0 (-x). This means -x < 0.
 - (b) Let $x, y \in \mathbb{R}$ and assume x < y. Then 0 < y x. Now (-x) (-y) = y x, so 0 < (-x) (-y). This mean -y < -x.
 - (c) Exactly one of the alternatives cases 0 < 1, 0 = 1, and 1 < 0 holds. Now $0 \neq 1$. Just suppose 1 < 0. From (b), -0 < -1, that is, 0 < -1. From the third property of < above, 0 < (-1)(-1). But (-1)(-1) = 1, so that 0 < 1, which is impossible when also 1 < 0.
- 9. [Prop. 2 proof details, Reals.]
 - (a) [Why is $n \le c < n + 1$?] By definition, $k_1 > c$ and, for each $k \in \mathbb{N}$, $k < k_1 \Longrightarrow k \le c$. Now $k_1 \ne 0$ because c > 0. Hence $k_1 \ge 1$. Thus $n = k_1 1 \in \mathbb{N}$. Since $n < k_1$, then $n \le c$. And of course $n + 1 = k_1 > c$.
 - (b) [Finish proof of Case (ii).] If m = -c, then -m = c < -m + 1. Suppose now $m \neq -c$, so that m < -c < m + 1. Then -m 1 < c < m, and so $-m 1 \le c < (-m 1) + 1$.
 - (c) [Uniqueness.] Suppose m and n are both integers with $m \le c < m + 1$ and $n \le c < n+1$. Just suppose $m \ne n$, say m < n. Then $m+1 \le n$, and so $m+1 \le n < c < n+1$. But also $m \le c < m+1$, so that $m \le c < m+1 \le n < c < n+1$. Thus c < m+1 and c > m+1, which is impossible.
- 10. [Re Theorem 3 proof, *Reals.*]

(a) We are given that a < b. So if $0 \le a$ is not the case, we are left with one of the following cases:

Case (i): a < b < 0. In this case 0 < -b < -a. From the already-proved case, there exists $q \in \mathbb{Q}$ with -b < q < -a. Then $-q \in \mathbb{Q}$ and a < -q < b.

Case(ii): a < 0 < b. From the already-proved case, there exists $q \in \mathbb{Q}$ with 0 < q < b. Then a < q < b also.

(b) By Proposition 2, there exists an integer k with $k \leq nc < k + 1$. Now nc > 0 because n > 0 and c > 0. Thus $k \geq 0$. Let m = k + 1. Then $m \in \mathbb{N}$ and $m - 1 = k \leq nc < k + 1 = m$.