
Math 300.2 Problem Set 7 Answers Fall, 2007

1. [Division Theorem for m = 5864 and n = 23.] By long division:

5864 = 254 · 23 + 22

2. [Prove Lemma 2.1.7.] Just suppose there is some natural number a for which bm ≤ a
for every natural number m; in other words, just suppose the set A defined by

A = { a : bm ≤ a for every m ∈ N }

is nonempty. By Well-Ordering, A has a least element a. Since a ∈ A, then also
bm+1 ≤ a for every natural number m, whence

bm ≤ a

b

for every natural number m.

(If we knew that b divided a, so that a/b were itself a natural number, then we would
be done, because then a/b would be an element of A that is strictly less than the least
element of A. However, there is no reason whatsoever to believe that b divides a.)

Since b > 1, then a/b < a. By the Gap Lemma, a/b ≤ a − 1. Now a 6= 0 because
certainly b0 = 1 6≤ 0. Thus a ≥ 1 and so a − 1 is a natural number.

For each natural number m we have therefore bm ≤ a/b ≤ a − 1. Thus a − 1 is an
element of A. This is impossible because a is the least element of A.

3. [Proposition 2.2.5 part 4.] Assume d | a and d | b. This means there exist integers m
and n for which

a = dm, b = dn.

Then for arbitrary integers s and t,

as + bt = (dm)s + (dn)t = d(ms + nt),

so that d | (as + bt), too.

4. [Exercise 2.2.9 (c).] Let m be an even integer and n be an odd integer. Then m = 2 s+1
and n = 2 t for some integers s and t, respectively. We have

m − n = (2 s + 1) − 2 t = 2 (s − t) + 1,

which is of the form 2 k + 1 for an integer k and hence is odd.

5. [Exercise 2.2.21 (1).] Just suppose
√

3 is rational. Then there exist positive integers
m and n such that

√
3 =

m

n
. (*)

Without loss of generality we may assume that m and n have no common divisors
other than 1 (because we may replace m and n, respectively, by their quotients when
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they are divided by their greatest common divisor). In particular, 3 does not divide
both m and n.

Square (*) and clear of fractions to obtain

m2 = 3n2. (**)

Thus 3 divides m2.

We claim that then 3 must divide m. In fact, by the Division Theorem there are
integers q and r with

m = 3 · q + r, 0 ≤ r < 3.

This means r = 0, 1, or 2. If r = 1, then

m2 = (3 · q + 1)2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1,

so that m2 is not divisible by 3. And if r = 2, then

m2 = (3 · q + 2)2 = 9q2 + 12q + 4 = 3(3q2 + 4q + 1) + 1,

so that again m2 is not divisible by 3. Hence necessarily r = 0.

Since r = 0, then

m = 3 · q.

Substitute this value in (**) to obtain

9 q2 = 3n2

whence

3 q2 = n2.

Thus n2 is divisible by 3. By the same argument as before, n is divisible by 3.

Thus both m and n are divisible by 3. This is a contradiction.

Note: You could have separated from the proof above the following result (and proved
it the same way it was proved above):

Lemma. Let m be an integer. If m2 is divisible by 3, then m is divisible by 3.

6. [Extra credit: Exercise 2.2.21 (6).] First, note that 0 < log10 2 < 1 (because
100 = 1 < 2 < 10 = 101).

Just suppose log10 2 is rational. Then there are integers m and n with n 6= 0 and

log10 2 =
m

n
.

Without loss of generality we may assume n > 0 (otherwise multiply both n and m
by −1), and then m > 0 also (since log10 2 > 0). Thus

0 < m < n.
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This means that

10m/n = 2,

and so

10m = 2 · 10n.

Write 10 as 2 · 5 to obtain

2m 5m = 2n+15n,

and then

5m = 2n−m+1 · 5n (†)

Since m < n, then n − m + 1 > 0. Thus the right-hand side of (†) is even, and so the
left-hand side 5m of (†) is even, too. But 5m is not even. This is a contradiction.

7. [Exercise 2.2.26 (1) (a).] The set J is not an ideal in Z because, for example, 1, 3 ∈ J
but 1 + 3 = 4 /∈ J . (Another reason would be that 1 ∈ J but 2 · 1 = 1 /∈ J .)

8. [Exercise 2.2.26 (4).] Let n ∈ J . We shall show that m n ∈ J for every integer m.

We use induction on m to show that m n ∈ J for every nonnegative integer m. Base

step: First, 0n = 0 ∈ J because 0 = n − n and n ∈ J . Inductive step: Now let m
be a nonnegative integer and assume that m n ∈ J . Then (m + 1)n = m n + n, and
m n + n ∈ J because m n ∈ J (by the inductive assumption) and n ∈ J .

Now let m be a negative integer. Then −m is a positive integer, so that (−m) n ∈ J
by what we just proved inductively. From the base step of the induction above, 0 ∈ J .
Then m n = 0 − (−m) n ∈ J because 0 ∈ J and (−m) n ∈ J .

Thus J is an ideal in Z.
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