1. [Division Theorem for m = 5864 and n = 23.] By long division:

 $5864 = 254 \cdot 23 + 22$

2. [Prove Lemma 2.1.7.] Just suppose there is some natural number a for which $b^m \leq a$ for every natural number m; in other words, just suppose the set A defined by

 $A = \{ a : b^m \le a \text{ for every } m \in \mathbb{N} \}$

is nonempty. By Well-Ordering, A has a least element a. Since $a \in A$, then also $b^{m+1} \leq a$ for every natural number m, whence

$$b^m \leq \frac{a}{b}$$

for every natural number m.

(If we knew that b divided a, so that a/b were itself a natural number, then we would be done, because then a/b would be an element of A that is strictly less than the least element of A. However, there is no reason whatsoever to believe that b divides a.)

Since b > 1, then a/b < a. By the Gap Lemma, $a/b \le a - 1$. Now $a \ne 0$ because certainly $b^0 = 1 \le 0$. Thus $a \ge 1$ and so a - 1 is a natural number.

For each natural number m we have therefore $b^m \leq a/b \leq a-1$. Thus a-1 is an element of A. This is impossible because a is the *least* element of A. \Box

3. [Proposition 2.2.5 part 4.] Assume $d \mid a$ and $d \mid b$. This means there exist integers m and n for which

 $a = dm, \qquad b = dn.$

Then for arbitrary integers s and t,

$$as + bt = (dm)s + (dn)t = d(ms + nt),$$

so that $d \mid (as + bt)$, too. \Box

4. [Exercise 2.2.9 (c).] Let m be an even integer and n be an odd integer. Then m = 2s+1 and n = 2t for some integers s and t, respectively. We have

m - n = (2s + 1) - 2t = 2(s - t) + 1,

which is of the form 2k + 1 for an integer k and hence is **odd**.

5. [Exercise 2.2.21 (1).] Just suppose $\sqrt{3}$ is rational. Then there exist positive integers m and n such that

$$\sqrt{3} = \frac{m}{n}.\tag{*}$$

Without loss of generality we may assume that m and n have no common divisors other than 1 (because we may replace m and n, respectively, by their quotients when

they are divided by their greatest common divisor). In particular, 3 does not divide both m and n.

Square (*) and clear of fractions to obtain

$$m^2 = 3 n^2.$$
 (**)

Thus 3 divides m^2 .

We claim that then 3 must divide m. In fact, by the Division Theorem there are integers q and r with

 $m = 3 \cdot q + r, \qquad 0 \le r < 3.$

This means r = 0, 1, or 2. If r = 1, then

$$m^2 = (3 \cdot q + 1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1,$$

so that m^2 is not divisible by 3. And if r = 2, then

$$m^{2} = (3 \cdot q + 2)^{2} = 9q^{2} + 12q + 4 = 3(3q^{2} + 4q + 1) + 1,$$

so that again m^2 is not divisible by 3. Hence necessarily r = 0. Since r = 0, then

 $m = 3 \cdot q.$

Substitute this value in (**) to obtain

$$9\,q^2 = 3\,n^2$$

whence

$$3q^2 = n^2.$$

Thus n^2 is divisible by 3. By the same argument as before, n is divisible by 3.

Thus both m and n are divisible by 3. This is a contradiction. \Box

Note: You could have separated from the proof above the following result (and proved it the same way it was proved above):

Lemma. Let m be an integer. If m^2 is divisible by 3, then m is divisible by 3.

6. [Extra credit: Exercise 2.2.21 (6).] First, note that $0 < \log_{10} 2 < 1$ (because $10^0 = 1 < 2 < 10 = 10^1$).

Just suppose $\log_{10}\,2$ is rational. Then there are integers m and n with $n\neq 0$ and

$$\log_{10} 2 = \frac{m}{n}.$$

Without loss of generality we may assume n > 0 (otherwise multiply both n and m by -1), and then m > 0 also (since $\log_{10} 2 > 0$). Thus

$$0 < m < n.$$

This means that

$$10^{m/n} = 2,$$

and so

 $10^m = 2 \cdot 10^n.$

Write 10 as $2 \cdot 5$ to obtain

$$2^m 5^m = 2^{n+1} 5^n,$$

and then

$$5^m = 2^{n-m+1} \cdot 5^n \tag{(†)}$$

Since m < n, then n - m + 1 > 0. Thus the right-hand side of (†) is even, and so the left-hand side 5^m of (†) is even, too. But 5^m is *not* even. This is a contradiction.

- 7. [Exercise 2.2.26 (1) (a).] The set J is **not** an ideal in \mathbb{Z} because, for example, $1, 3 \in J$ but $1 + 3 = 4 \notin J$. (Another reason would be that $1 \in J$ but $2 \cdot 1 = 1 \notin J$.)
- 8. [Exercise 2.2.26 (4).] Let $n \in J$. We shall show that $m n \in J$ for every integer m.

We use induction on m to show that $m n \in J$ for every nonnegative integer m. Base step: First, $0n = 0 \in J$ because 0 = n - n and $n \in J$. Inductive step: Now let m be a nonnegative integer and assume that $m n \in J$. Then (m + 1)n = mn + n, and $m n + n \in J$ because $m n \in J$ (by the inductive assumption) and $n \in J$.

Now let *m* be a negative integer. Then -m is a positive integer, so that $(-m) n \in J$ by what we just proved inductively. From the base step of the induction above, $0 \in J$. Then $m n = 0 - (-m) n \in J$ because $0 \in J$ and $(-m) n \in J$.

Thus J is an ideal in \mathbb{Z} . \Box