Math 300.2

- (a) [Exercise 1.4.3 (8).] Definition: A greatest element of a subset A of N is a g for which g ∈ A and a ≤ g for every a ∈ A.
 Example: Take A = {1,2,3}. Then 3 is a greatest element of A.
 Uniqueness of greatest element: Let A ⊂ N. Assume g₁ and g₂ is each a greatest element of A. Because g₁ is a greatest element of A and g₂ ∈ A, then g₂ ≤ g₁. Reversing the roles of g₁ and g₂, we have also g₁ ≤ g₂. Hence g₁ = g₂.
 - (b) [Exercise 1.4.3 (9).] No, a nonempty subset of \mathbb{N} need not have a greatest element. In fact, \mathbb{N} itself does not have a greatest element. (The reason is the same as you have seen much earlier: If $g \in \mathbb{N}$, then $g + 1 \in \mathbb{N}$ with g + 1 > g.)
- 2. [Exercise 1.4.7 (7).] Just suppose there is some integer greater than 1 that is *neither* a prime *nor* a product of primes. By the Well-Ordering Principle, there is a least such integer n_1 .

Since n_1 is not a prime, there is some integer d with $1 < d < n_1$ that divides n_1 . Then there is an integer k for which

 $n_1 = dk$,

and $1 < k < n_1$, too (because k = 1 would mean $d = n_1$, and $k = n_1$ would mean d = 1). Because d and k are integers greater than 1 but less than n_1 , each is a prime or a product of primes. But then their product, n_1 , is a product of primes. This is a contradiction. \Box .

3. [Exercises 1.4.8 (5).] **Definition.** Let A be a subset of \mathbb{Z} . A number $b \in \mathbb{Z}$ is said to be an *upper bound of* A in \mathbb{Z} when $a \leq b$ for all $a \in A$. The subset A of \mathbb{Z} is said to be *bounded above in* \mathbb{Z} when there exists some upper bound of A in \mathbb{Z} .

Proposition. Each nonempty subset of \mathbb{Z} that is bounded above in \mathbb{Z} has a greatest element.

Proof. Let $A \subset \mathbb{Z}$ with $A \neq \emptyset$ and assume A is bounded above in \mathbb{Z} . Then there exists some upper bound b of A in \mathbb{Z} .

(The idea of the proof below is to reflect the set A through the origin so as to obtain a set that is bounded below in \mathbb{Z} ; to obtain the least element of the reflected set; and then to see that the reflection of that element is the greatest element of the original set A.)

Define $K = \{-a : a \in A\}$. The subset K of Z is nonempty because A is nonempty. The number -b is a lower bound of K in Z because for each $a \in A$ we have $a \leq b$ whence $-b \leq -a$. Thus K is bounded below in Z.

From (4), the set K has a least element k_0 . By definition of K, there is some $a_0 \in A$ for which $k_0 = -a_0$. We claim that a_0 is a greatest element of A. To see this, let $a \in A$. Now $-a \in K$, so that $k_0 \leq -a$, that is, $-a_0 \leq -a$; this implies $a \leq a_0$, as desired.

4. [Exercise 1.4.18 (3).] Use strong induction on n.

Base step: (n = 1). First, $F_1 = 1 = \left(\frac{13}{8}\right)^0 = \left(\frac{13}{8}\right)^{1-1}$.

Inductive step. Now let $n \ge 1$ and assume that, for every positive integer $k \le n$,

$$F_k \le \left(\frac{13}{8}\right)^{k-1}$$
 and, if $k > 1$, then $F_k < \left(\frac{13}{8}\right)^{k-1}$

What must be deduced is that $F_{n+1} \leq (13/8)^n$ and, if n+1 > 1, then $F_{n+1} < (13/8)^n$. Of course n+1 > 1 because $n \geq 1$, so all that must be deduced is that $F_{n+1} < (13/8)^n$.

By the recursive definition of the Fibonacci numbers, $F_{n+1} = F_n + F_{n-1}$. To apply the inductive assumption to both n and n-1 will require not just that $n \leq n$ and $n-1 \leq n$ (both of which are certainly true), but also that $n \geq 1$ (which is true) and that $n-1 \geq 1$ —which is not so unless $n \geq 2$. Hence we must treat separately the case n = 2.

In the case n = 2: $F_{2+1} = F_3 = 2 < \frac{169}{64} = \left(\frac{13}{8}\right)^2 = \left(\frac{13}{8}\right)^{(2+1)-1}$

Now suppose $n \ge 2$, so that $1 \le n \le n$ and $1 \le n - 1 \le n$. By the inductive assumption,

$$F_n \le \left(\frac{13}{8}\right)^{n-1}, \qquad F_{n-1} \le \left(\frac{13}{8}\right)^{n-2}$$

Then:

$$F_{n+1} = F_n + F_{n-1}$$

$$\leq \left(\frac{13}{8}\right)^{n-1} + \left(\frac{13}{8}\right)^{n-2}$$

$$= \left(\frac{13}{8}\right)^{n-2} \left(\frac{13}{8} + 1\right) = \left(\frac{13}{8}\right)^{n-2} \frac{21}{8}$$

In order to complete the deduction that $F_{n+1} < (13/8)^n$, it remains only to show that

$$\left(\frac{13}{8}\right)^{n-2}\frac{21}{8} < \left(\frac{13}{8}\right)^n.$$

The latter inequality is equivalent to

$$\left(\frac{13}{8}\right)^{-2}\frac{21}{8} < 1$$

that is,

$$\left(\frac{8}{13}\right)^2 \frac{21}{8} < 1.$$

But

$$\left(\frac{8}{13}\right)^2 \frac{21}{8} = \frac{168}{169} < 1,$$

as needed. (Whew—rather close!) \Box

5. [Prove Proposition 1.5.6.] Let n and j be integers with $0 \le j \le n$. If j = 0, then $\binom{n}{j-1} = 0$ by definition, so that

$$\binom{n+1}{j} = \binom{n+1}{0} = 1 = 0 + 1 = \binom{n}{j-1} + \binom{n}{0} = \binom{n}{j-1} + \binom{n}{j}.$$

Now suppose j > 0, so that $1 \le j \le n$. By definitions of the coefficients here,

$$\binom{n+1}{j}$$
$$\binom{n+1}{j} = \frac{n!}{(j-1)! \cdot (n-[j-1])!} + \frac{n!}{j! \cdot (n-j)!}$$
$$= \frac{n!}{(j-1)! \cdot (n-j+1)!} + \frac{n!}{j! \cdot (n-j)!}$$
$$= \frac{j \cdot n!}{j \cdot (j-1)! \cdot (n-j+1)!} + \frac{(n-j+1) \cdot n!}{j! \cdot (n-j)! \cdot (n-j+1)}$$
$$= \frac{j \cdot n!}{j! \cdot (n-j+1)!} + \frac{(n-j+1) \cdot n!}{j! \cdot (n-j+1)!}$$
$$= \frac{j \cdot n! + (n-j+1) \cdot n!}{j! \cdot (n-j+1)!} = \frac{(j+(n-j+1)) n!}{j! \cdot (n-j+1)!}$$
$$= \frac{(n+1) \cdot n!}{j! \cdot (n-j+1)!}$$
$$= \frac{(n+1)!}{j! \cdot (n+1-j)!} = \binom{n+1}{j}. \Box$$