
Math 300.2 Problem Set 6 Answers Fall, 2007

1. (a) [Exercise 1.4.3 (8).] Definition: A greatest element of a subset A of N is a g
for which g ∈ A and a ≤ g for every a ∈ A.

Example: Take A = {1, 2, 3}. Then 3 is a greatest element of A.

Uniqueness of greatest element: Let A ⊂ N. Assume g1 and g2 is each a greatest
element of A. Because g1 is a greatest element of A and g2 ∈ A, then g2 ≤ g1.
Reversing the roles of g1 and g2, we have also g1 ≤ g2. Hence g1 = g2.

(b) [Exercise 1.4.3 (9).] No, a nonempty subset of N need not have a greatest element.
In fact, N itself does not have a greatest element. (The reason is the same as you
have seen much earlier: If g ∈ N, then g + 1 ∈ N with g + 1 > g.)

2. [Exercise 1.4.7 (7).] Just suppose there is some integer greater than 1 that is neither
a prime nor a product of primes. By the Well-Ordering Principle, there is a least such
integer n1.

Since n1 is not a prime, there is some integer d with 1 < d < n1 that divides n1. Then
there is an integer k for which

n1 = d k,

and 1 < k < n1, too (because k = 1 would mean d = n1, and k = n1 would mean
d = 1). Because d and k are integers greater than 1 but less than n1, each is a prime
or a product of primes. But then their product, n1, is a product of primes. This is a
contradiction. .

3. [Exercises 1.4.8 (5).] Definition. Let A be a subset of Z. A number b ∈ Z is said to
be an upper bound of A in Z when a ≤ b for all a ∈ A. The subset A of Z is said to
be bounded above in Z when there exists some upper bound of A in Z.

Proposition. Each nonempty subset of Z that is bounded above in Z has a greatest
element.

Proof. Let A ⊂ Z with A 6= ∅ and assume A is bounded above in Z. Then there
exists some upper bound b of A in Z.

(The idea of the proof below is to reflect the set A through the origin so as to obtain
a set that is bounded below in Z; to obtain the least element of the reflected set; and
then to see that the reflection of that element is the greatest element of the original
set A.)

Define K = { −a : a ∈ A }. The subset K of Z is nonempty because A is nonempty.
The number −b is a lower bound of K in Z because for each a ∈ A we have a ≤ b
whence −b ≤ −a. Thus K is bounded below in Z.

From (4), the set K has a least element k0. By definition of K, there is some a0 ∈ A
for which k0 = −a0. We claim that a0 is a greatest element of A. To see this, let
a ∈ A. Now −a ∈ K, so that k0 ≤ −a, that is, −a0 ≤ −a; this implies a ≤ a0, as
desired.
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4. [Exercise 1.4.18 (3).] Use strong induction on n.

Base step: (n = 1). First, F1 = 1 =

(

13

8

)0

=

(

13

8

)1−1

.

Inductive step. Now let n ≥ 1 and assume that, for every positive integer k ≤ n,

Fk ≤

(

13

8

)k−1

and, if k > 1, then Fk <

(

13

8

)k−1

.

What must be deduced is that Fn+1 ≤ (13/8)n and, if n+1 > 1, then Fn+1 < (13/8)n.
Of course n+1 > 1 because n ≥ 1, so all that must be deduced is that Fn+1 < (13/8)n.

By the recursive definition of the Fibonacci numbers, Fn+1 = Fn + Fn−1. To apply
the inductive assumption to both n and n − 1 will require not just that n ≤ n and
n − 1 ≤ n (both of which are certainly true), but also that n ≥ 1 (which is true) and
that n − 1 ≥ 1—which is not so unless n ≥ 2. Hence we must treat separately the
case n = 2.

In the case n = 2: F2+1 = F3 = 2 <
169

64
=

(

13

8

)2

=

(

13

8

)(2+1)−1

Now suppose n ≥ 2, so that 1 ≤ n ≤ n and 1 ≤ n − 1 ≤ n. By the inductive
assumption,

Fn ≤

(

13

8

)n−1

, Fn−1 ≤

(

13

8

)n−2

.

Then:

Fn+1 = Fn + Fn−1

≤

(

13

8

)n−1

+

(

13

8

)n−2

=

(

13

8

)n−2 (

13

8
+ 1

)

=

(

13

8

)n−2 21

8
.

In order to complete the deduction that Fn+1 < (13/8)n, it remains only to show that

(

13

8

)n−2 21

8
<

(

13

8

)n

.

The latter inequality is equivalent to
(

13

8

)

−2 21

8
< 1

that is,

(

8

13

)2 21

8
< 1.

But
(

8

13

)2 21

8
=

168

169
< 1,

as needed. (Whew—rather close!)
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5. [Prove Proposition 1.5.6.] Let n and j be integers with 0 ≤ j ≤ n. If j = 0, then
(

n
j−1

)

= 0 by definition, so that

(

n + 1

j

)

=

(

n + 1

0

)

= 1 = 0 + 1 =

(

n

j − 1

)

+

(

n

0

)

=

(

n

j − 1

)

+

(

n

j

)

.

Now suppose j > 0, so that 1 ≤ j ≤ n. By definitions of the coefficients here,

(

n + 1

j

)

(

n

j − 1

)

+

(

n

j

)

=
n!

(j − 1)! · (n − [j − 1])!
+

n!

j! · (n − j)!

=
n!

(j − 1)! · (n − j + 1)!
+

n!

j! · (n − j)!

=
j · n!

j · (j − 1)! · (n − j + 1)!
+

(n − j + 1) · n!

j! · (n − j)! · (n − j + 1)

=
j · n!

j! · (n − j + 1)!
+

(n − j + 1) · n!

j! · (n − j + 1)!

=
j · n! + (n − j + 1) · n!

j! · (n − j + 1)!
=

(

j + (n − j + 1)
)

n!

j! · (n − j + 1)!

=
(n + 1) · n!

j! · (n − j + 1)!

=
(n + 1)!

j! · (n + 1 − j)!
=

(

n + 1

j

)

.
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