Math 300.2

Problem Set 4 Answers

1. [Exercise 1.1.26 (e).] Fix a real number $x \ge 0$. We use induction to show that $(1+x)^n \ge 1+nx$ for all $n=0,1,2,\ldots$

Base step (n = 0): First, $(1 + x)^0 = 1 \ge 1 + 0 = 1 + 0 \cdot x$. [2%]

Inductive step. Let n be a nonnegative integer and assume that $(1+x)^n \ge 1+nx$. [1%] We wish to deduce that $(1+x)^{n+1} \ge 1 + (n+1)x$. [1%] Then

- $(1+x)^{n+1} = (1+x) \cdot (1+x)^n$ $\geq (1+x) \cdot (1+nx)$ $= 1+x+nx+nx^2 = (n+1)x+1+nx^2$ $\geq (n+1)x$ [1%]
 [1%]
- 2. [Exercise 1.1.26 (i).] Calculations reveal that, although the inequality is true for $1 \le n \le 4$, it is false for $5 \le n \le 15$. However, it appears to be true again for $n \ge 16$. [3%] We shall prove that this is the case.

Discussion. Since $\log_2 n \le \sqrt{n} \iff n \le 2^{\sqrt{n}}$, you could prove, instead, the equivalent equality $n \le 2^{\sqrt{n}}$ for $n = 16, 17, 18, \ldots$

I first tried that by induction on n. In the inductive step, after assuming that $n \leq 2^{\sqrt{n}}$, I tried to deduce that $n + 1 \leq 2^{\sqrt{n+1}}$ by proving that $2^{\sqrt{n}} + 1 \leq 2^{\sqrt{n+1}}$ (which clearly would suffice). However, to prove the latter inequality I would have to directly compare the two functions of the variable n without any further use of the inductive assumption. So I abandoned the attempt at induction and began anew.

(Legitimate proofs by induction on n are welcome!)

Proof. [7%] We prove that $\log_2 x \leq \sqrt{x}$, for all real $x \geq 16$. We have $\log_2 x = (\log_e x)(\log_e 2) = (\ln x)(\ln 2)$. Then what we want to prove is,

$$\frac{\ln x}{\ln 2} \le \sqrt{x} \qquad (x \ge 16),$$

or, equivalently:

$$\ln x \le (\ln 2)\sqrt{x} \qquad (x \ge 16)$$

Let $f(x) = \ln x$ and $g(x) = (\ln 2)\sqrt{x}$. We shall show that f(16) = g(16) and that $f'(x) \le g'(x)$ for $x \ge 16$, and this will imply that $f(x) \le g(x)$ for $x \ge 16$, as desired. First,

$$f(16) = \ln 16 = \ln(2^4) = 4(\ln 2) = (\ln 2)\sqrt{16} = g(16).$$

Next, f'(x) = 1/x and $g'(x) = (\ln 2)/(2\sqrt{x})$, and

$$f'(x) = \frac{1}{x} \le \frac{\ln 2}{2\sqrt{x}} = g'(x) \iff \frac{2}{\ln 2} \le \sqrt{x}.$$

Now the latter inequality is certainly true when $x \ge 16$. Indeed, if $x \ge 16$, then $\sqrt{x} \ge 4$, and $4 \ge 2/\ln 2$ because, equivalently, $\ln 2 > 1/2$. \Box

3. [Exercise 1.1.27 (b).] Denote by H_n the number of handshakes for n people.

Discovery. (This part [4%].) For just 1 person, there are no handshakes, so let's restrict our consideration to at least 2 people. For 2 people, there is exactly 1 handshake, between those two. For 3 people—call them A, B, and C—there are 3 handshakes, namely: A with B, A with C, and B with C. For 4 people—call them A, B, C, and D—there are 6 handshakes, namely: A with B, A with C, A with D, B with C, B with D, C with D. You could try, say, 5 people as well, but look at the numbers already:

Probably no pattern is yet evident in these numbers. So try another approach....

Suppose there are *n* people; P_1, P_2, \ldots, P_n . Then P_1 shakes hand with each of the n-1 people P_2, P_3, \ldots, P_n . And aside from shaking hands with P_1 (which we already counted), P_2 shakes hands with the n-2 people P_3, P_4, \ldots, P_n . Similarly, aside from shaking hands with P_1 and P_2 (which we already counted), P_3 shakes hands with the n-3 people P_4, P_5, \ldots, P_n . Etc. Finally, aside from shaking hands with $P_1, P_2, \ldots, P_{n-2}$ (which we already counted for those folks), P_{n-1} shakes hands with just 1 person, namely, P_n . And we have now already counted all the handshakes with P_n . So the total number H_n of handshakes is given by:

$$H_n = (n-1) + (n-2) + (n-3) + \dots + 1 = \sum_{j=1}^{n-1} j \qquad [2.5\%]$$

To find a closed form of the formula for H_n , use the formula from Example 1.1.15 for the sum of the first *n* positive integers (replacing *n* there by n - 1) so as to obtain::

$$H_n = \frac{n(n-1)}{2} \qquad (n = 2, 3, \dots)$$
 [1.5%] (*)

Because of that 'Etc." in our counting, we need an inductive proof of (*).

Proof. (This part [6%].) We prove (*) by induction on n.

Base step (n = 2): For n = 2 people, clearly there is just one handshake, between those 2 people. Thus $H_2 = 1 = 2(2-1)/2$, as required. [1%]

Inductive step: Now let $n \ge 2$ and assume $H_n = n(n-1)/2$. [1%] We wish to deduce that $H_{n+1} = (n+1)((n+1)-1)/2$, that is, $H_{n+1} = (n+1)n/2$. [1%]

Denote the n + 1 people by $P_1, P_2, \ldots, P_n, P_{n+1}$. A handshake between two of these people is either a handshake between some two of the first n people P_1, P_2, \ldots, P_n or else a handshake between P_{n+1} and one of those n people. Thus

$$H_{n+1} = H_n + K_n \qquad [1\%]$$

where K_n is the number of handshakes between P_{n+1} and one of those *n* other people. Clearly $K_n = n$. [1%] And by the inductive assumption, $H_n = n(n-1)/2$. Hence:

$$H_{n+1} = \frac{n(n-1)}{2} + n$$

= $\frac{n(n-1) + 2n}{2} = \frac{n((n-1) + 2)}{2} = \frac{(n+1)n}{2}$ \Box [1%]

Note: We regard a handshake as taking place between two people, without consideration of one person first extending the handshake to the other. In other words, a handshake between two people is represented by the set of those two people. So in more mathematical terms, the problem was to count the number of 2-element subsets of a set of n elements. We discovered, and proved, that this number is n(n-1)/2.

Another way to represent this number is as the *binomial coefficient* $\binom{n}{2}$. As we shall later see,

$$\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)(n-2)(n-3)\cdots 2\cdot 1}{2\cdot 1\cdot (n-2)(n-3)\cdots 2\cdot 1} = \frac{n(n-1)}{2}.$$

[Of course this formula also requires proof, especially in view of the dots (\cdots) there.]

4. [Exercise 1.1.27 (d).] Denote by S_n the number of subsets of an n-element set.
Discovery. (This part [3%].) Through examples we've already observed at least the following:

The pattern here, we conjecture, is:

$$S_n = 2^n$$
 $(n = 0, 1, 2, ...)$

Here's another way of arriving at this guess. Number as x_1, x_2, \ldots, x_n the elements of an *n*-element set X. An arbitrary subset A of X is determined by which of those n elements belong to it: either $x_1 \in A$ or else $x_1 \notin A$; either $x_2 \in A$ or else $x_2 \notin A, \ldots$, either $x_n \in A$ or else $x_n \notin A$. For each of the n elements x_i of X, there is a choice from two mutually exclusive alternatives to be made, namely, whether $x_i \in A$ or else $x_i \notin A$. Thus there are exactly

$$\underbrace{2 \cdot 2 \cdot 2 \cdots 2}_{n} = 2^{n}$$

choices in all.

Proof. (This part [7%].) More precisely, we use induction on n to prove:

Every *n*-element set has exactly 2^n subsets. (n = 0, 1, 2, ...)

Base step (n = 0): A set with 0 elements is just the empty set \emptyset , and this has only 1 subset, namely, itself. Thus $S_0 = 1$, as required. [1%]

Inductive step: Now let $n \ge 0$ and assume $S_n = 2^n$, that is—and this is essential to say—*every n*-element set has exactly 2^n subsets. [1%]

Let X be an arbitrary (n + 1)-element set. We wish to deduce that X has exactly 2^{n+1} subsets. [1%]

Number the elements of X as $x_1, x_2, \ldots, x_n, x_{n+1}$. Now x_{n+1} is an element of some subsets of X and not an element of others. In other words, subsets A of X are of two distinct kinds: those $A \subset X$ for which $x_{n+1} \notin A$ and those $A \subset X$ for which $x_n \in A$.

Then the total number S_{n+1} is the sum of the numbers of each of these two kinds of subsets. [1%]

Count the second kind of subsets. A subset A of X with $x_{n+1} \notin A$ is just a subset of $X \setminus \{x_{n+1}\} = \{x_1, x_2, \ldots x_n\}$. Now $X \setminus \{x_{n+1}\}$ is an n-element set, and by the inductive assumption this n-element set has exactly 2^n subsets. Thus there are exactly 2^n subsets A of X for which $x_{n+1} \notin A$. [1%]

Count the first kind of subsets. Think of each subset A of X with $x_{n+1} \in A$ as: remove the element x_{n+1} from A so as to obtain a subset B of $X \setminus \{x_{n+1}\}$, and then put x_{n+1} back into A to obtain $A = B \cup \{x_{n+1}\}$. In other words: If $A \subset X$ with $x_{n+1} \in A$, then

$$A = B \cup \{x_{n+1}\}$$

with

$$B = A \setminus \{x_{n+1}\} \subset X \setminus \{x_{n+1}\};$$

and conversely, if $B \subset X \setminus \{x_{n+1}\}$, then

 $A = B \cup \{x_{n+1}\} \subset X.$

is a subset of X with $x_{n+1} \in A$. Thus there are exactly as many subsets A of X with $x_{n+1} \in A$ as there are subsets B of $X \setminus \{x_{n+1}\}$. Now $X \setminus \{x_{n+1}\}$ is an n-element set, so by the inductive assumption $X \setminus \{x_{n+1}\}$ has exactly 2^n subsets. Hence the number of subsets A of X with $x_{n+1} \in A$ is also 2^n . [1%]

There are thus 2^n subsets of X of the first kind and 2^n subsets of the second kind. Hence the total number of subsets of X is

 $2^{n} + 2^{n} = 2 \cdot 2^{n} = 2^{n+1},$ [1%]

as desired. \Box