Math 300.2

1. [Exercise B.1.9 (2) (g).] Let $A \subset X$. To see that $A \subset f^{-1}(f(A))$, let $a \in A$. Then $f(a) \in f(A)$. Then there exists some $b \in f(A)$ for which f(a) = b, namely, b = f(a). By definition of inverse image, $a \in f^{-1}(f(A))$. \Box

We show by counterexample that equality does *not* need to hold. Take, for example, $X = Y = \mathbb{R}, f: X \to Y$ the function given by $f(x) = x^2$ for all $x \in X$, and $A = \{x \in \mathbb{R} : x \leq 0\}$, the set of nonpositive reals. Clearly $f(A) = \mathbb{R}^+$, the set of nonnegative reals. Now $f^{-1}(\mathbb{R}^+) = \mathbb{R}$ [since also $f(x) \in \mathbb{R}^+$ for every x > 0]. Thus $A \neq f^{-1}(f(A))$.

[Note: Why would suspect that equality need not hold? Look at what happens if you try to prove that it does: Let $x \in f^{-1}(f(A))$. This means $f(x) \in f(A)$, so f(x) = f(a) for some $a \in A$. However, we cannot deduce from that that x = a, and so cannot deduce that then $x \in A$. Indeed, this suggests looking for an example where the function f is not injective. The squaring function with domain \mathbb{R} is one such.]

2. [Exercise B.2.6 (2).] We must establish both existence and uniqueness of h.

Uniqueness. Let $h: Z \to X \times Y$ be a map making the diagram commutative. Let $z \in Z$. Since $h(z) \in X \times Y$, write

h(z) = (x, y)

where $x \in X$ and $y \in Y$. Then

x = p(h(z)) and y = q(h(z)).

According to the commutativity of the diagram,

$$p(h(z)) = f(z)$$
 and $q(h(z)) = g(z)$.

Hence

$$x = f(z)$$
 and $y = g(z)$.

Thus

$$h(z) = (f(z), g(z)). \tag{(*)}$$

This establishes uniqueness.

Existence. Now define the rule for $h: Z \to X \times Y$ by the formula (*). [This does define a function from Z to $X \times Y$ because for each $z \in Z$, we have $f(z) \in X$ and $f(z) \in Y$ so that $(f(z), g(z)) \in X \times Y$.] It remains to check that this h makes the diagram commutative. For each $z \in Z$:

$$p\big(h(z)\big) = p\big(f(z),g(z)\big) = f(z), \quad q\big(h(z)\big) = q\big(f(z),g(z)\big) = g(z),$$

so that $p \circ h = f$ and $q \circ h = g$, as desired. \Box

3. [Exercise B.3.7.] First we show f is injective. Let $x_1, x_2 \in X$ with $f(x_1) = f(x_2)$. Then $g(f(x_1)) = g(f(x_2))$, that is, $(g \circ f)(x_1) = (g \circ f)(x_2)$. since $g \circ f$ is injective, it follows that $x_1 = x_2$.

Second we show g is surjective. Let z Z. Since $g \circ f$ is surjective, there is some $x \in X$ for which $(g \circ f)(x) = z$. Define y = f(x). Then $y \in Y$ with g(y) = g(f(x)) = z. \Box

4. [Exercise B.3.9 (2).] Let $f: X \to Y$ and $g: Y \to Z$ be bijections. From Prop. B.3.6, the composite $g \circ f: X \to Z$ is also bijective.

Now both $(g \circ f)^{-1}$ and $f^{-1} \circ g^{-1}$ are maps $Z \to X$. To see they have the same values, let $z \in Z$. Define

$$y = g^{-1}(z), \qquad x = f^{-1}(y).$$

so that

$$g(y) = z, \qquad f(x) = y.$$

Then

$$(g \circ f)(x) = g(f(x)) = g(y) = z,$$

so that

$$(g \circ f)^{-1}(z) = x.$$

However,

$$(f^{-1} \circ g^{-1})(z) = f^{-1}(g^{-1}(z)) = f^{-1}(y) = x$$

by definition of x and y. Thus

$$(f^{-1} \circ g^{-1})(z) = (f^{-1} \circ g^{-1})(z),$$

as desired. \Box

Note: Another way to show that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ is to use Prop. B.3.12.

- 5. [Exercise B.3.10.]
 - (a) If $\alpha = 0$, then $f(x) = \beta$ is constant.

Conversely, suppose f is constant. Now $f(0) = \beta$, so that $f(x) = \beta$ for all $x \in \mathbb{R}$. In particular, $f(1) = \beta$. But $f(1) = \alpha(1) + \beta$, so that $\alpha + \beta = \beta$ and consequently $\alpha = 0$.

Hence f is constant if and only if $\alpha = 0$.

- (b) If $\alpha = 0$, certainly f cannot be injective (because it would be constant). Conversely, suppose $\alpha \neq 0$. Then for all $x_1, x_2 \in R$, if $f(x_1) = f(x_2)$, then $\alpha x_1 + \beta = \alpha x_2 + \beta$ whence $x_1 = x_2$ (because $\alpha \neq 0$). Thus f is injective. Hence f is injective if and only if $\alpha \neq 0$.
- (c) If α = 0, certainly f cannot be surjective (because it would take the constant value β at all x ∈ ℝ).
 Conversely, suppose α ≠ 0. Let y ∈ ℝ. By solving the equation αx + β = y for

Conversely, suppose $\alpha \neq 0$. Let $y \in \mathbb{R}$. By solving the equation $\alpha x + \beta = y$ for x to obtain $x = (y - \beta)/\alpha$ we see that f(x) = y for this x. Thus f is surjective. Hence f is surjective if and only if $\alpha \neq 0$.

(d) From (b) and (c), f is bijective if and only if $\alpha \neq 0$.