Math 300.2

1. (a) [Exercise L.4.6 for part 8 of Tautology L4.5.] Your intermediate columns might be in a different order from mine.

P	Q	R	Q&R	$P \lor (Q\&R)$	$P \lor Q$	$P \vee R$	$(P \lor Q) \& (P \lor R)$	$ P \lor (Q\&R) \iff (P \lor Q) \& (P \lor R)$
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	F	Т	F	F	Т
F	F	Т	F	F	F	Т	F	Т
F	F	F	F	F	F	F	F	Т

(b) [Exercise L.4.11 for part 9 of Tautology L.4.5.] Begin by examining the negation of the desired formula $P \& (Q \lor R)$:

$$\neg \left(P \& (Q \lor R) \right) \iff \neg P \lor \neg (Q \lor R) \tag{1}$$

$$\iff \neg P \lor (\neg Q \& \neg R) \tag{2}$$

$$\iff (\neg P \lor \neg Q) \& (\neg P \lor \neg R) \tag{3}$$

$$\iff (\neg P \lor \neg Q) \& (\neg P \lor \neg R) \tag{3}$$
$$\iff (\neg (P \& Q)) \& (\neg (P \& R)) \tag{4}$$
$$\iff (\neg (P \& Q)) \lor (P \& R)) \tag{5}$$

$$\iff \neg \left((P \& Q) \lor (P \& R) \right) \tag{5}$$

[Here steps (1) and (2) each follows by applying a De Morgan Law; (3) follows from Tautology L.4.5 part 8; (4) follows by using a De Morgan Law twice; and (5) applies by using a De Morgan Law.]

So far, $\neg (P \& (Q \lor R)) \iff \neg ((P \& Q) \lor (P \& R))$. By double negation, taking the negation of both sides of this equivalence yields the desired result.

2. (a) [Prove Tautology L.4.8 with a truth table.] Your intermediate columns might be in a different order from mine.

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \lor Q$	$(P \Rightarrow Q) \iff (\neg P \lor Q)$
Т	Т	Т	F	Т	Т
Т	$ \mathbf{F} $	F	F	F	Т
\mathbf{F}	T	Т	Т	Т	Т
\mathbf{F}	F	Т	Т	Т	Т

(b) [Prove Tautology L.4.10, part 2.]

$$\neg (P \& Q) \iff \neg (\neg (\neg P) \& \neg (\neg Q)) \tag{6}$$

$$\iff \neg \left(\neg \left((\neg P) \lor (\neg Q)\right)\right) \tag{7}$$

$$\iff (\neg P) \lor (\neg Q) \tag{8}$$

[Here step (6) uses double negation twice; (7) uses the first part of Tautology L.4.10; and (8) again uses double negation.]

Continued on next page.

3. [Exercise A.1.2 (2).] Method 1: use the definition of power set directly to show that $X \subset Y$ and $Y \subset X$. Let X and Y be sets and assume $\mathcal{P}(X) = \mathcal{P}(Y)$. Since $X \in \mathcal{P}(X)$, then also $X \in \mathcal{P}(Y)$. This means $X \subset Y$. Similarly (by reversing the roles of X and Y, we see that $Y \subset X$. Hence X = Y.

Method 2: work with elements of X and Y to show $x \in X \iff x \in Y$. Observe that, for a set Z and an element z, we have:

 $z \in Z \iff \{z\} \subset Z \iff \{z\} \in \mathcal{P}\left(Z\right)$

Let X and Y be sets and assume $\mathcal{P}(X) = \mathcal{P}(Y)$. We show, first, that $X \subset Y$. Let $x \in X$. Then $\{x\} \subset X$, that is, $\{x\} \in \mathcal{P}(X)$. By the assumption, also $\{x\} \in \mathcal{P}(Y)$, that is, $\{x\} \subset Y$. This means $x \in Y$.

By exactly the same argument but with the roles of X and Y reversed, $Y \subset X$. Hence X = Y. \Box

4. [Exercise A.1.3 (d), 2nd part] Let A and B be any sets.

First we show that $A \cap B = A \implies A \subset B$. Assume $A \cap B = A$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$, so in particular $x \in B$. Thus $A \subset B$.

Second we show, conversely, that $A \subset B \implies A \cap B = A$. Assume $A \subset B$. Now $A \cap B \subset A$ no matter what the sets A and B are. To see the reverse inclusion, let $x \in A$. Since $A \subset B$, then also $x \in B$, and so $x \in A \cap B$. Thus $A \cap B = A$. \Box

$$A \cap B = A \iff A \subset B.$$

5. [Prove Prop. A.1.4, 2nd part, about $X \setminus (A \cap B)$.] For all x:

$$\begin{aligned} x \in X \setminus (A \cap B) &\iff x \in X \& x \notin A \cap B \\ &\iff x \in X \& (x \notin A \text{ or } x \notin B) \\ &\iff (x \in X \& x \notin A) \text{ or } (x \in X \& x \notin B) \\ &\iff x \in X \setminus A \text{ or } x \in X \setminus B \\ &\iff x \in (X \setminus A) \cup (X \setminus B) \quad \Box \end{aligned}$$

Note: It is tempting to do here something analogous to what was done (taking negations) in the solution to # 2b. In other words, to start with $X \setminus (X \setminus (A \cap B))$ and to use the first of De Morgan's Laws (Prop. A.1.4 part 1). This approach would work in the case that $A \subset X$ and $B \subset X$. Unfortunately, for a set X and an arbitrary set S, it is not necessarily true that $X \setminus (X \setminus S) = S$; in fact, $X \setminus (X \setminus S) = X \cap S$, so that $X \setminus (X \setminus S) \neq S$ when $S \not\subset X$.

6. [Exercise A.1.5 (4).] Let A and B be subsets of X.

First we show that $A \subset B \implies A \cap (X \setminus B) = \emptyset$. Assume $A \subset B$. Just suppose A and $X \setminus B$ are *not* disjoint, that is, there is some $x \in A \cap (X \setminus B)$. Then $x \in A$ but $x \notin B$. However, since $x \in A$ and $A \subset B$, actually $x \in B$. This is a contradiction.

Conversely, we show that $A \cap (X \setminus B) = \emptyset \implies A \subset B$. Assume that $A \cap (X \setminus B) = \emptyset$. Let $x \in A$. Then $x \in X$ since $A \subset X$. If $x \notin B$ then $x \in X \setminus B$ and so $x \in A \cap X \setminus B = \emptyset$, which is impossible; hence $x \in B$, too. \Box