Math 300.2 Problem Set 1 Answers Fall, 2007

1. (a) [Exercise L.4.6 for part 8 of Tautology L4.5.] Your intermediate columns might
be in a different order from mine.
R| Q&R | PV(Q&R) || PVQ | PVR | (PVQ) & (PVR) || PV(Q&R) <= (PVQ)&(PVR)
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(b) [Exercise L.4.11 for part 9 of Tautology L.4.5.] Begin by examining the negation
of the desired formula P & (Q V R):

~(P&(QVR)) < -PV-(QVR) (1)
< PV (-Q&—-R) (2)
e (-PV Q)& (~PV -R) (3)
= (-(P&Q)) & (—~(P&R)) (4)
— =((P&Q)V(P&R)) (5)

[Here steps (1) and (2) each follows by applying a De Morgan Law; (3) follows
from Tautology L.4.5 part 8; (4) follows by using a De Morgan Law twice; and
(5) applies by using a De Morgan Law.]

So far, 7 (P& (QV R)) < ~((P& Q) V (P & R)). By double negation, taking
the negation of both sides of this equivalence yields the desired result.

2. (a) [Prove Tautology L.4.8 with a truth table.] Your intermediate columns might be
in a different order from mine.

PlQ|P=Q|-P|-PVvQ| (P=Q) < (-PVQ)
T|T T F T T
T|F F F F T
F|T T T T T
F|F T T T T
(b) [Prove Tautology L.4.10, part 2.]
~(P&Q) = ~(-(=P) & ~(-Q)) (6)
= = (=((-P)V(-Q)) (7)
= (=P)V(-Q) (8)

[Here step (6) uses double negation twice; (7) uses the first part of Tautology
L.4.10; and (8) again uses double negation.|

Continued on next page.



3. [Exercise A.1.2 (2).] Method 1: use the definition of power set directly to show that
X CcY and Y C X. Let X and Y be sets and assume P (X) = P(Y). Since
X € P(X), then also X € P(Y). This means X C Y. Similarly (by reversing the
roles of X and Y, we see that Y C X. Hence X =Y.

Method 2: work with elements of X and Y to show z € X <= x € Y. Observe that,
for a set Z and an element z, we have:

2€Z <= {2} CZ <= {2} eP(2)

Let X and Y be sets and assume P (X) = P (Y). We show, first, that X C Y. Let
x € X. Then {z} C X, that is, {z} € P (X). By the assumption, also {z} € P (Y),
that is, {z} C Y. This means z € Y.

By exactly the same argument but with the roles of X and Y reversed, Y C X. Hence
X=Y. 0O

4. [Exercise A.1.3 (d), 2nd part] Let A and B be any sets.

First we show that ANB=A — A C B. Assume ANB=A. Let x € AN B.
Then x € A and = € B, so in particular x € B. Thus A C B.

Second we show, conversely, that A C B — AN B = A. Assume A C B. Now
AN B C A no matter what the sets A and B are. To see the reverse inclusion, let
x € A. Since AC B, then alsox € B,andsox € ANB. Thus AnNB=A. O

ANB=A «<— AC B.

5. [Prove Prop. A.1.4, 2nd part, about X \ (AN B).] For all x:

r€X\(ANB) <= zcX&x¢ ANB
— reX&(x¢ Aorx ¢ B)
— (reX&r¢Aor(reX&x¢ B)
< rze€X\Aorze X\B
— ze€(X\A)U(X\B) O

Note: It is tempting to do here something analogous to what was done (taking nega-
tions) in the solution to # 2b. In other words, to start with X \ (X \ (AN B)) and to
use the first of De Morgan’s Laws (Prop. A.1.4 part 1). This approach would work in
the case that A C X and B C X. Unfortunately, for a set X and an arbitrary set .S,
it is not necessarily true that X \ (X \ S) = S; in fact, X \ (X \ S) = X N S, so that
X\ (X\S)#S when S ¢ X.

6. [Exercise A.1.5 (4).] Let A and B be subsets of X.

First we show that AC B = AN (X \ B) = &. Assume A C B. Just suppose A
and X \ B are not disjoint, that is, there is some 2z € AN (X \ B). Then = € A but
x ¢ B. However, since x € A and A C B, actually x € B. This is a contradiction.

Conversely, we show that AN(X\B) =@ = A C B. Assume that AN(X\B) = 2.
Let z € A. Thenx € X since AC X. If x ¢ Bthenz € X\Bandsox € ANX\B =
@, which is impossible; hence x € B, too. [



