Math 300.2

- 1. [Re Theorem 5, Real Numbers, proof of property (***).] We use induction on n. First, $b_0 - a_0 = 2 - 1 = 1/2^0$. Now let $n \in \mathbb{N}$ and assume $b_n - a_n = 1/2^n$. Now either $[a_{n+1}, b_{n+1}] = [a_n, c_n]$ or else $[a_{n+1}, b_{n+1}] = [c_n, b_n]$. Since $c_n = (a_n + b_n)/2$, we have $c_n - a_n = b_n - c_n = (b_n - a_n)/2$. Hence in either case $b_{n+1} - a_{n+1} = (b_n - a_n)/2 = (1/2^n)/2 = 1/2^{n+1}$. \Box
- 2. [Complete the proof that \mathbb{N}^* is infinite.] First we show that $g: \{1, 2, ..., n, n+1\} \to \mathbb{N}^*$ is injective. Let $j, k \in \{1, 2, ..., n, n+1\}$ with $j \neq k$. If $1 \leq j, k \leq n$, then $f(j) \neq f(k)$ since f is injective, and so

$$g(j) = 1 + f(j) \neq 1 + f(k) = g(k).$$

If $1 \leq j \leq n$ and k = n + 1, then g(j) = 1 + f(j) > 1 whereas g(k) = 1, so that $g(j) \neq g(k)$. Similarly, if $1 \leq k \leq n$ and j = n + 1, then $g(k) \neq g(j)$.

Next, we show that g is surjective. Let $m \in \mathbb{N}^*$. If, on the one hand, m = 1, then m = g(n+1). If, on the other hand, m > 1, then $m-1 \in \mathbb{N}^*$; in this case m-1 = f(j) for some $1 \le j \le n$ because f is surjective, and then

$$m = 1 + (m - 1) = 1 + f(j) = g(j).$$

Then g is a bijection. But then the composite

 $f^{-1} \circ g: \{1, 2, \dots, n, n+1\} \to \{1, 2, \dots, n\}$

is also bijective. This contradicts Lemma 1 of Subsets of finite sets are finite. \Box

3. [The union of two finite sets is finite.] Let A be finite with m = #(A). We prove that, for every natural number n, for every finite set B with #(B) = n, the union $A \cup B$ is also finite. We use induction on n.

Base step (n = 0). Let B be a finite set with #(B) = 0. Then $B = \emptyset$. This means that $A \cup B = A$, so there is nothing to prove.

Inductive step. Let $n \ge 0$ and assume that for every finite set B with #(B) = n, the union $A \cup B$ is finite. Let B be a finite set with #(B) = n + 1.

If $B \subset A$, then $A \cup B = A$ and there is nothing to prove.

Assume now that $B \not\subset A$. Then there exists some $b \in B$ with $b \notin A$. Define

 $D = B \setminus \{b\}.$

Since B is finite, its subset D is also finite. Moreover, #(D) = n.¹ By the inductive assumption, $A \cup D$ is finite. Now $b \notin A$ and of course $b \notin D$, so that $b \notin A \cup D$. Since

$$A \cup B = A \cup (D \cup \{b\}) = (A \cup D) \cup \{b\},$$

it follows from Lemma 2 of Subsets of finite sets are finite that $A \cup B$ is finite. \Box

¹Optional proof that #(D) = n: Let $h: \{1, 2, ..., n, n + 1\} \approx B$. Since we could compose h with a permutation of $\{1, 2, ..., n, n + 1\}$ that swaps n + 1 with $h^{-1}(b)$, we may assume without loss of generality that h(n + 1) = b. Then the restriction of h to $\{1, 2, ..., n\}$ in the domain and $h(\{1, 2, ..., n\})$ in the codomain gives $\{1, 2, ..., n\} \approx D$.

4. [Finish proof of Lemma 4.1.36.] First, let $f \in 2^X$. By definition of φ and ψ ,

 $\varphi(\psi(f)) = \varphi(\{x \in X : f(x) = 1\}) = c_A$

where $A = \{x \in X : f(x) = 1\}$. Both f and c_A are functions from X to $\{0, 1\}$. Moreover, for $x \in X$,

$$f(x) = 1 \iff x \in A \iff c_A(x) = 1$$

and so also $f(x) = 0 \iff c_A(x) = 0$. Hence $f = c_A$. This means that $\varphi(\psi(f)) = f$. Second, let $A \in \mathcal{P}(X)$. By definition of φ and ψ ,

$$\psi(\varphi(A)) = \psi(c_A) = \{ x \in X : c_A(x) = 1 \} = A. \qquad \Box$$

- 5. [Exercise 4.2.3 (1).] Let O be the set of all odd positive integers. The map $f: \mathbb{N} \to O$ defined by f(n) = 2n + 1 is surjective because each odd positive integer has the form 2n + 1 for some natural number n; it is injective because if f(m) = f(n), that is, 2m + 1 = 2n + 1, then m = n.
- 6. [Complete the proof of Prop. 4.2.4.] By the construction of the sequence $(x_n)_{n=0}^{\infty}$,

$$i < j \implies x_i < x_j \qquad (i, j \in \mathbb{N}).$$

We use strong induction on m to show that $m \in A \implies m = x_n$ for some $n \in \mathbb{N}$. Base step $(m = \min A)$: By the construction, $\min A = x_0$.

Inductive step: Let $m \in A$ with $m > \min A$ and assume that, for each $k \in A$ with k < m we have $k = x_n$ for some $n \in \mathbb{N}$.

The set $\{a \in A : k < m\}$ is finite and nonempty, so it has a greatest element b. Then $b \in A$ and b < m. By the inductive assumption,

 $b = x_n$

for some $n \in \mathbb{N}$. Now $i \in \mathbb{N}$ with $i \leq n$ implies $x_i \leq x_n$; this means that m is the least element of $A \setminus \{x_0, x_1, \ldots, x_n\}$. But this least element is, by definition, x_{n+1} . Thus $m = x_{n+1}$. \Box

- 7. [Prove Lemma 1.] Since A is denumerable and $\mathbb{N}^* \approx \mathbb{N}$, there exists a bijection $f: \mathbb{N}^* \approx A$. Then the extension $F: \mathbb{N} \to A \cup \{b\}$ of f given by F(0) = b is clearly a bijection. Hence $A \cup B = A \cup \{b\}$ is denumerable. \Box
- 8. [Prove Lemma 2.] Fix a denumerable set A. We use induction on n = #(B) to show that if B is finite with A and B disjoint, then $A \cup B$ is denumerable.

Base step. If n = 0, then $B = \emptyset$ and so $A \cup B = A$ is denumerable.

In the inductive step we shall need the case n = 1; this case is just Lemma 1.

Inductive step: Now let $n \ge 0$ and assume that, for every finite set B disjoint from A with #(B) = n, the set $A \cup B$ is denumerable.

Let B be a finite set that is disjoint from A with #(B) = n + 1. Choose some $b \in B$; such exists because #(B) > 0. Then $B \setminus \{b\}$ is a finite set with $\#(B \setminus \{b\}) = n$, and $B \setminus \{b\}$ is disjoint from A. By the inductive assumption, $A \cup (B \setminus \{b\})$ is finite. Now

 $A \cup B = (A \cup (B \setminus \{b\})) \cup \{b\}.$

From the case n = 1 proved above, it follows that $A \cup B$ is denumerable, too. \Box

9. [Prove Proposition 3.] Write

 $A \cup B = A \cup (B \setminus A)$

The two sets on the right-hand side above are disjoint. Moreover, as a subset of the finite set B, the second one, $B \setminus A$, is finite. The result now follows at once from Lemma 2. \Box

10. [Prove Lemma 4.] There exist bijections $f \colon \mathbb{N} \approx A$ and $g \colon \mathbb{N} \approx B$. Define $h \colon \mathbb{N} \to A \cup B$ by:

$$h(n) = \begin{cases} f(n/2) & \text{if } n \text{ is even,} \\ g((n-1)/2) & \text{if } n \text{ is odd.} \end{cases}$$

Then h is a bijection. The proof of that is similar to the proof used to show that \mathbb{Z} is denumerable. Details follow.

We show that h is surjective. Let $y \in A \cup B$. If $y \in A$, there exists $j \in \mathbb{N}$ with y = f(j); then y = h(2j). Similarly, if $y \in B$, there exists $k \in \mathbb{N}$ with y = g(k); then y = h(2k+1).

We show that h is injective. Let $j, k \in \mathbb{N}$ and suppose h(j) = h(k). There are three cases:

Case 1: $h(j), h(k) \in A$. Then f(j/2) = f(k/2) so that j/2 = k/2 because f is injective, and so j = k.

Case 2: $h(j), h(k) \in B$. Then j = k as in Case 1.

Case 3: $h(j) \in A$ and $h(k) \in B$, or vice versa. Then $h(j) = h(k) \in A \cap B$. This is impossible because A and B are disjoint. \Box