Math 300.2 Problem Set 10 Answers Fall, 2007

1. [Re Theorem 5, Real Numbers, proof of property (***).] We use induction on n. First,
bo—ap =2—1=1/2° Now let n € N and assume b, — a, = 1/2". Now either
[@n+1,bnt1] = [an, cn] or else [ant1,bn+1] = [cn, bn]. Since ¢, = (an, + by)/2, we have
¢n — ap = by — ¢y = (b, — ay,)/2. Hence in either case b1 — ant1 = (by — ay)/2 =
(1/2M)/2 =1/2"*L. O

2. [Complete the proof that N* is infinite.] First we show that g: {1,2 ... ,n,n+1} — N*
is injective. Let j,k € {1,2 ...,n,n+1} with j # k. If 1 < j, k <mn, then f(j) # f(k)
since f is injective, and so

9() =1+ f() # 1+ f(k) = g(k).
If1<j<nandk =n+1, then g(j) = 1+ f(j) > 1 whereas g(k) = 1, so that
9(j) # g(k). Similarly, if 1 <k <n and j =n+ 1, then g(k) # g(j).

Next, we show that ¢ is surjective. Let m € N*. If, on the one hand, m = 1, then
m = g(n+1). If, on the other hand, m > 1, then m—1 € N*; in this case m—1 = f(j)
for some 1 < j < n because f is surjective, and then

m=1+(m—1)=1+ /(i) = gj).
Then g is a bijection. But then the composite

flog:{1,2...,n,n+1} = {1,2....n}
is also bijective. This contradicts Lemma 1 of Subsets of finite sets are finite. [

3. [The union of two finite sets is finite.] Let A be finite with m = #(A). We prove that,
for every natural number n, for every finite set B with #(B) = n, the union AU B is
also finite. We use induction on n.

Base step (n = 0). Let B be a finite set with #(B) = 0. Then B = @. This means
that AU B = A, so there is nothing to prove.

Inductive step. Let n > 0 and assume that for every finite set B with #(B) = n, the
union AU B is finite. Let B be a finite set with #(B) =n + 1.

If BC A, then AU B = A and there is nothing to prove.
Assume now that B ¢ A. Then there exists some b € B with b ¢ A. Define

D =B\ {b}.

Since B is finite, its subset D is also finite. Moreover, #(D) = n.! By the inductive
assumption, AU D is finite. Now b ¢ A and of course b ¢ D, so that b ¢ AU D. Since

AUB=AU(DU{b}) = (AU D)U({b},

it follows from Lemma 2 of Subsets of finite sets are finite that AU B is finite. [

!Optional proof that #(D) = n: Let h: {1,2,...,n,n + 1} = B. Since we could compose h with a
permutation of {1,2,...,n,n + 1} that swaps n + 1 with R ~'(b), we may assume without loss of generality
that h(n + 1) = b. Then the restriction of h to {1,2,...,n} in the domain and h({1,2,...,n}) in the
codomain gives {1,2,...,n} = D.



4. [Finish proof of Lemma 4.1.36.] First, let f € 2X. By definition of ¢ and 1,

p((f) =p({zeX: flz)=1})=ca
where A = {zx € X : f(x) = 1}. Both f and c4 are functions from X to {0,1}.
Moreover, for x € X,

fz)=1 <= 2€ A < calx)=1
and so also f(z) =0 <= ca(x) = 0. Hence f = c4. This means that ¢(¢(f)) = f.
Second, let A € P (X). By definition of ¢ and 1,

¢(<P(A)) =Y(ca)={x e X :calx) =1} =A. O

5. [Exercise 4.2.3 (1).] Let O be the set of all odd positive integers. The map f: N — O
defined by f(n) =2n+ 1 is surjective because each odd positive integer has the form
2n 4+ 1 for some natural number n; it is injective because if f(m) = f(n), that is,
2m+1=2n+1, then m =n.

6. [Complete the proof of Prop. 4.2.4.] By the construction of the sequence (z,,) -

n=0’

i1 <j = x; <xj (i, € N).

We use strong induction on m to show that m € A = m = x,, for some n € N.
Base step (m = min A): By the construction, min A = xy.

Inductive step: Let m € A with m > min A and assume that, for each k € A with
k < m we have k = x,, for some n € N.

The set {a € A: k < m} is finite and nonempty, so it has a greatest element b. Then
b € A and b < m. By the inductive assumption,

b==x,

for some n € N. Now 7 € N with ¢ < n implies x; < x,; this means that m is the least
element of A\ {zg,x1,...,2,}. But this least element is, by definition, x,1. Thus
m=2Ipy1. U

7. [Prove Lemma 1.] Since A is denumerable and N* ~ N, there exists a bijection
f: N* =~ A. Then the extension F': N — AU {b} of f given by F(0) = b is clearly a
bijection. Hence AU B = AU {b} is denumerable. [

8. [Prove Lemma 2.] Fix a denumerable set A. We use induction on n = #(B) to show
that if B is finite with A and B disjoint, then A U B is denumerable.
Base step. If n =0, then B = & and so AU B = A is denumerable.
In the inductive step we shall need the case n = 1; this case is just Lemma 1.

Inductive step: Now let n > 0 and assume that, for every finite set B disjoint from A
with #(B) = n, the set AU B is denumerable.

Let B be a finite set that is disjoint from A with #(B) = n + 1. Choose some b € B;
such exists because #(B) > 0. Then B\ {b} is a finite set with #(B \ {b}) = n, and
B\ {b} is disjoint from A. By the inductive assumption, AU (B \ {b}) is finite. Now

AUB = (AU (B\{b})) U{b}.

From the case n = 1 proved above, it follows that A U B is denumerable, too. [J



9.

10.

[Prove Proposition 3.] Write
AUB=AU(B\A)

The two sets on the right-hand side above are disjoint. Moreover, as a subset of the
finite set B, the second one, B\ A, is finite. The result now follows at once from
Lemma 2. [

[Prove Lemma 4.] There exist bijections f: N~ Aand g: N~ B. Define h: N - AUB
by:

) f(n/2) if n is even,
hn) = {g((n —1)/2) ifnis odd.

Then A is a bijection. The proof of that is similar to the proof used to show that Z is
denumerable. Details follow.

We show that h is surjective. Let y € AU B. If y € A, there exists j € N with
y = f(j); then y = h(2j). Similarly, if y € B, there exists k € N with y = g(k); then
y=nh2k+1).

We show that h is injective. Let j,k € N and suppose h(j) = h(k). There are three
cases:

Case 1: h(j),h(k) € A. Then f(j/2) = f(k/2) so that j/2 = k/2 because f is
injective, and so j = k.

Case 2: h(j),h(k) € B. Then j =k as in Case 1.

Case 3: h(j) € A and h(k) € B, or vice versa. Then h(j) = h(k) € AN B. This is
impossible because A and B are disjoint. [



