
Math 300.2 Problem Set 10 Answers Fall, 2007

1. [Re Theorem 5, Real Numbers, proof of property (***).] We use induction on n. First,
b0 − a0 = 2 − 1 = 1/20. Now let n ∈ N and assume bn − an = 1/2n. Now either
[an+1, bn+1] = [an, cn] or else [an+1, bn+1] = [cn, bn]. Since cn = (an + bn)/2, we have
cn − an = bn − cn = (bn − an)/2. Hence in either case bn+1 − an+1 = (bn − an)/2 =
(1/2n)/2 = 1/2n+1.

2. [Complete the proof that N
∗ is infinite.] First we show that g : {1, 2 . . . , n, n+1} → N

∗

is injective. Let j, k ∈ {1, 2 . . . , n, n+1} with j 6= k. If 1 ≤ j, k ≤ n, then f(j) 6= f(k)
since f is injective, and so

g(j) = 1 + f(j) 6= 1 + f(k) = g(k).

If 1 ≤ j ≤ n and k = n + 1, then g(j) = 1 + f(j) > 1 whereas g(k) = 1, so that
g(j) 6= g(k). Similarly, if 1 ≤ k ≤ n and j = n+ 1, then g(k) 6= g(j).

Next, we show that g is surjective. Let m ∈ N
∗. If, on the one hand, m = 1, then

m = g(n+1). If, on the other hand, m > 1, then m−1 ∈ N
∗; in this case m−1 = f(j)

for some 1 ≤ j ≤ n because f is surjective, and then

m = 1 + (m− 1) = 1 + f(j) = g(j).

Then g is a bijection. But then the composite

f−1 ◦ g : {1, 2 . . . , n, n+ 1} → {1, 2 . . . , n}

is also bijective. This contradicts Lemma 1 of Subsets of finite sets are finite.

3. [The union of two finite sets is finite.] Let A be finite with m = #(A). We prove that,
for every natural number n, for every finite set B with #(B) = n, the union A∪B is
also finite. We use induction on n.

Base step (n = 0). Let B be a finite set with #(B) = 0. Then B = ∅. This means
that A ∪B = A, so there is nothing to prove.

Inductive step. Let n ≥ 0 and assume that for every finite set B with #(B) = n, the
union A ∪B is finite. Let B be a finite set with #(B) = n+ 1.

If B ⊂ A, then A ∪B = A and there is nothing to prove.

Assume now that B 6⊂ A. Then there exists some b ∈ B with b /∈ A. Define

D = B \ {b}.

Since B is finite, its subset D is also finite. Moreover, #(D) = n.1 By the inductive
assumption, A∪D is finite. Now b /∈ A and of course b /∈ D, so that b /∈ A∪D. Since

A ∪B = A ∪ (D ∪ {b}) = (A ∪D) ∪ {b},

it follows from Lemma 2 of Subsets of finite sets are finite that A ∪B is finite.

1Optional proof that #(D) = n: Let h : {1, 2, . . . , n, n + 1} ≈ B. Since we could compose h with a
permutation of {1, 2, . . . , n, n + 1} that swaps n + 1 with h−1(b), we may assume without loss of generality
that h(n + 1) = b. Then the restriction of h to {1, 2, . . . , n} in the domain and h({1, 2, . . . , n}) in the
codomain gives {1, 2, . . . , n} ≈ D.
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4. [Finish proof of Lemma 4.1.36.] First, let f ∈ 2X . By definition of ϕ and ψ,

ϕ
(

ψ(f)
)

= ϕ({x ∈ X : f(x) = 1 }) = cA

where A = {x ∈ X : f(x) = 1 }. Both f and cA are functions from X to {0, 1}.
Moreover, for x ∈ X,

f(x) = 1 ⇐⇒ x ∈ A ⇐⇒ cA(x) = 1

and so also f(x) = 0 ⇐⇒ cA(x) = 0. Hence f = cA. This means that ϕ
(

ψ(f)
)

= f .

Second, let A ∈ P (X). By definition of ϕ and ψ,

ψ
(

ϕ(A)
)

= ψ(cA) = {x ∈ X : cA(x) = 1 } = A.

5. [Exercise 4.2.3 (1).] Let O be the set of all odd positive integers. The map f : N → O
defined by f(n) = 2n+ 1 is surjective because each odd positive integer has the form
2n + 1 for some natural number n; it is injective because if f(m) = f(n), that is,
2m+ 1 = 2n+ 1, then m = n.

6. [Complete the proof of Prop. 4.2.4.] By the construction of the sequence (xn)∞

n=0
,

i < j =⇒ xi < xj (i, j ∈ N).

We use strong induction on m to show that m ∈ A =⇒ m = xn for some n ∈ N.

Base step (m = minA): By the construction, minA = x0.

Inductive step: Let m ∈ A with m > minA and assume that, for each k ∈ A with
k < m we have k = xn for some n ∈ N.

The set { a ∈ A : k < m } is finite and nonempty, so it has a greatest element b. Then
b ∈ A and b < m. By the inductive assumption,

b = xn

for some n ∈ N. Now i ∈ N with i ≤ n implies xi ≤ xn; this means that m is the least
element of A \ {x0, x1, . . . , xn}. But this least element is, by definition, xn+1. Thus
m = xn+1.

7. [Prove Lemma 1.] Since A is denumerable and N
∗ ≈ N, there exists a bijection

f : N
∗ ≈ A. Then the extension F : N → A ∪ {b} of f given by F (0) = b is clearly a

bijection. Hence A ∪B = A ∪ {b} is denumerable.

8. [Prove Lemma 2.] Fix a denumerable set A. We use induction on n = #(B) to show
that if B is finite with A and B disjoint, then A ∪B is denumerable.

Base step. If n = 0, then B = ∅ and so A ∪B = A is denumerable.

In the inductive step we shall need the case n = 1; this case is just Lemma 1.

Inductive step: Now let n ≥ 0 and assume that, for every finite set B disjoint from A
with #(B) = n, the set A ∪B is denumerable.

Let B be a finite set that is disjoint from A with #(B) = n+ 1. Choose some b ∈ B;
such exists because #(B) > 0. Then B \ {b} is a finite set with #(B \ {b}) = n, and
B \ {b} is disjoint from A. By the inductive assumption, A ∪ (B \ {b}) is finite. Now

A ∪B =
(

A ∪ (B \ {b})
)

∪ {b}.

From the case n = 1 proved above, it follows that A ∪B is denumerable, too.
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9. [Prove Proposition 3.] Write

A ∪B = A ∪ (B \A)

The two sets on the right-hand side above are disjoint. Moreover, as a subset of the
finite set B, the second one, B \ A, is finite. The result now follows at once from
Lemma 2.

10. [Prove Lemma 4.] There exist bijections f : N ≈ A and g : N ≈ B. Define h : N → A∪B
by:

h(n) =

{

f(n/2) if n is even,

g
(

(n− 1)/2
)

if n is odd.

Then h is a bijection. The proof of that is similar to the proof used to show that Z is
denumerable. Details follow.

We show that h is surjective. Let y ∈ A ∪ B. If y ∈ A, there exists j ∈ N with
y = f(j); then y = h(2 j). Similarly, if y ∈ B, there exists k ∈ N with y = g(k); then
y = h(2 k + 1).

We show that h is injective. Let j, k ∈ N and suppose h(j) = h(k). There are three
cases:

Case 1: h(j), h(k) ∈ A. Then f(j/2) = f(k/2) so that j/2 = k/2 because f is
injective, and so j = k.

Case 2: h(j), h(k) ∈ B. Then j = k as in Case 1.

Case 3: h(j) ∈ A and h(k) ∈ B, or vice versa. Then h(j) = h(k) ∈ A ∩ B. This is
impossible because A and B are disjoint.
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