Due: Friday, December 7, 1:00 p.m. Leave in Liz's LGRT 1623D mailbox

- 1. In the proof of Theorem 5, *The Real Numbers* notes, establish property (***) of the intervals $[a_n, b_n]$.
- 2. Complete the following proof (like the one begun in class) that \mathbb{N}^* is infinite: Just suppose \mathbb{N}^* is finite. Since $\mathbb{N}^* \neq \emptyset$, there exists some positive integer n and a bijection $f: \{1, 2, \ldots, n\} \approx \mathbb{N}^*$. Define a map $g: \{1, 2, \ldots, n, n+1\} \to \mathbb{N}^*$ by

$$g(j) = \begin{cases} 1 + f(j) & \text{if } 1 \le j \le n \\ 1 & \text{if } j = n + 1. \end{cases}$$

Then g is a bijection because Then

- 3. Prove that the union $A \cup B$ of two finite sets is finite by induction on n = #(B). Hint: Use Lemma 2 from the note Subsets of finite sets are finite.
- 4. Complete the proof of Lemma 4.1.36 by showing that the composites $\varphi \circ \psi$ and $\psi \circ \varphi$ are actually identity maps.
- 5. Do Exercise 4.2.3 (1).
- 6. Complete the proof of Proposition 4.2.4 by using induction on m to show that $m \in A \implies m = x_n$ for some $n \in \mathbb{N}$. (*Hint:* The base step should be not m = 1, but rather m = least element of A.)

Recall the lemma that if A is finite and $b \notin A$, then $A \cup \{b\}$ is finite and $\#(A \cup \{b\}) = \#(A) + 1$. That lemma was used to prove the proposition that if A and B are disjoint finite sets, then $A \cup B$ is finite and $\#(A \cup B) = \#(A) + \#(B)$. The results below concern the analogous situation where A is infinite.

7.–10. Prove the following lemmas and proposition.

Lemma 1. Let A be a denumerable set and let $b \notin A$. Then $A \cup \{b\}$ is also denumerable.

Lemma 2. Let A be a denumerable set and let B be a finite set that is disjoint from A. Then $A \cup B$ is also denumerable.

Hint: Use Lemma 1.

Proposition 3. Let A be a denumerable set and let B be any finite set. Then $A \cup B$ is also denumerable.

Hint: Use induction on #(B).

Lemma 4. Let A and B be disjoint denumerable sets. Then $A \cup B$ is denumerable. *Hint:* Look at the proof that \mathbb{Z} is denumerable.